Categories
Guest Articles

Climate change: the challenge to medicine in the 21st century

Medicine in the early decades of the 21st century offers great promise, powered by ready access to knowledge, innovative imaging and interventional technologies, sophisticated research, and personalised pharmaceuticals. Despite this, doctors of the next decades will be faced with unique national and global challenges that they are currently ill equipped to deal with.

Climate change is predicted to be the greatest challenge to global health in the 21st century, threatening agriculture, stable food and water supplies, infrastructure, coastal communities, the economy, and national security. Optimistically, however, this also presents the greatest opportunity for prevention of harm to human health if effective and adequate actions are urgently taken.

Climate change has become fundamentally a moral problem. The scientific evidence is now so powerful and the consequences for current and future generations so dire that those who ignore, obstruct, or corrupt that evidence are guilty of great intergenerational injustice. The merchants of doubt, as Naomi Oreskes branded them, have become intellectually marooned and morally exposed [1].

Questioning the evidence

It is the nature of science to continually question, however, it is also the role of science to draw conclusions to be acted upon. Today, we are presented with objective measurements demonstrating a changing climate. For instance, CO2 levels exceeded 400 ppm for the first time in human history and are still rising, the average annual global temperature has reached a record peak, and the average temperature during each of the past four decades has exceeded the decade before [2]. Human activity has been shown to be the major factor causing these problems [3]. Apologists for inaction trawl through the literature hoping to find some variation in predicted changes such as rainfall levels, or some slight defect in methodology. In contrast, the latest International Panel on Climate Change (IPCC) Report, based upon an enormous volume of evidence from highly qualified climate scientists, has sounded a clarion call for urgent and adequate political action [4]. When we are faced with irrefutable evidence of climate change, it becomes far too dangerous to argue that the evidence is too weak to take bold and decisive action.

The obvious purpose of climate change deniers or doubters is to confuse the public, weaken political resolve, stifle transition to more sustainable economies with innovative renewable energy technologies, and encourage rampant expansion of fossil fuel mining, extraction, transportation and eventual combustion within Australia or overseas.

Health effects of climate change

It is the most vulnerable and least powerful who are increasingly bearing the brunt of climate change. Children, the elderly, and those with chronic diseases usually suffer the most. In Africa, this is mediated through the increasing likelihood of droughts, dehydration, heatstroke, declining agricultural output, starvation, diarrhoeal diseases, and vector borne diseases [5].

Pacific island nations like Kiribati are facing existential threats from sea level rises and storm surges causing abandonment. At this stage, environmental refugees are not recognised by the UN Convention on Refugees [6]. Europe is already staggering from refugees fleeing conflict and starvation. Australia will not be immune from the plight of environmental refugees if further global warming is not addressed, placing unique demands on our social and health care systems.

Extreme weather events are being felt with increasing regularity. Countries in Europe, Asia, and the Americas have experienced more than usual episodes of flooding, blizzards, tornadoes, and cyclones of increasing intensity in some regions and droughts in others [7]. The Arctic ice cap and glaciers continue to melt and the Great Barrier Reef coral is dying [8].

Australians are now realising that heat waves will become more frequent and more intense resulting in not only increasing discomfort and dehydration but also major cardiac and respiratory consequences. In major heat waves such as that in Victoria in December 2009, twice as many vulnerable people died prematurely from those effects than died in the associated devastating bushfires [9].

Most Australian state and mainland territories are experiencing bushfires of increasing frequency and severity with great loss of pastures, forests, livestock, native animals, homes, and human life on many occasions. There are virtually no climate change deniers among firefighters battling those bushfires.

Scientific solutions

Despite recent funding cuts to many successful programs, scientific studies into climate change and its effects in Australia continue to enhance the evidence. Technological advances in the quality, economic feasibility, and quantity of solar photo-voltaic (PV) panels continue to deliver increasing energy outputs nationally and globally (87% rise delivering 47 G W in 2015) [10]. Batteries able to spread solar generated energy over 24 hours are becoming much better, cheaper, and more available. These technologies will soon enable thousands of households, commercial ventures, and institutions to be freed from the need to be linked to coal powered electricity grids.

Although there has been lukewarm political support and pockets of local opposition, land based wind turbines are becoming cheaper and more available, supplying 63 GW towards global energy needs in 2015 [10]. Large solar –thermal fields have been installed in several counties whilst wave, tidal power, and geo-thermal research and development advance in many centres.

Electric cars powered by energy generated by renewable energy technologies with battery storage facilities are about to become much more widely available with major manufacturers investing heavily in these technologies. They have real potential to revolutionise motorised transportation.

Carbon capture research and development, tree planting projects, and similar measures may help but will be hopelessly insufficient. The most effective, efficient, and necessary carbon capture available is to leave most fossil fuels in the ground. Around 80% of known reserves must remain there. Renewable energy technologies need to replace fossil fuel economies and workforce dislocations must be managed adroitly during the transition process.

Political responses

What factors are now preventing urgent and adequate action in Australia on climate change? Current ideology states that unrestricted progress must be pursued for the greater economic good. This is seen in the mantra of ‘growth and jobs’ and the need for increasing consumption. Concepts such as limited resources and the need for sustainability are often regarded as radical. Environmental harms are barely mentioned, while the direct and indirect health consequences virtually unheard of when expansions of fossil fuel mining and extraction are promoted. Effective action must challenge this ideology.

Prestigious government agencies such as the CSIRO in Australia, NASA in the USA, and similar agencies in Europe and Asia have produced a wealth of valuable data about climate change. Government restrictions to their funding can cause great harm and damage the independent advice that they should provide.

Powerful rallying calls have been made internationally, such as the latest Lancet Commission Report on the health impacts of climate change last June, followed by the UN Climate Change Conference in November 2015 [11]. The Pope’s Encyclical on climate change gave additional moral weight to that call [12]. National agreements signed in the Paris Accord and recently ratified at the UN may not be legally binding but they are already being heeded. The USA and China, the two largest polluting countries on Earth at present, and many other countries, have firmed up their commitments to act urgently and on a scale designed to drive down emissions sufficiently to limit average annual global temperature rises to no more than 2.0 degrees Celsius (and hopefully below 1.5 degrees Celsius) above pre-industrial levels.

Unless our nation faces this local and global challenge with far more wisdom, vigour, and determination than present policies will deliver, the consequences will be increasingly severe, and those governments that are responsible will be rightly condemned by succeeding generations.

Democracy, divestment & individual action

Impatient with the current short-sighted national leadership, many individuals and organisations are utilising social media and acting on a variety of fronts. The divestment from fossil fuel movement is gaining momentum. Millions of individuals, thousands of corporations, multiple universities and medical organisations, philanthropic foundations, banks, and even the large Norwegian sovereign wealth fund have divested [13]. The inevitability of stranded assets in this sector has influenced astute investors.

Individuals can and are taking action to live more sustainably but political inertia is the major block. In a democracy such as Australia, with financially powerful vested interests undoubtedly influencing public policy, individuals and the organisations to which they belong still have a say. Medical practitioners and medical students, and their professional bodies, must use their intelligence, knowledge, energy, and voice to demand of governments urgent and adequate policies for tackling climate change.

The future

World citizenry is now a reality, driven by increasing global connectedness and common challenges. Medical practitioners and medical students have great opportunities and responsibilities to provide expertise and leadership. Global healthcare inequity is already great – for example, 5 billion people currently lack access to safe, timely, effective, and affordable surgical, gynaecological/obstetrical and anaesthetic care [14]. That inequity will worsen if climate change and related environmental hazards are not tackled urgently and adequately. Your generation must be at the forefront of doing so.

Medicine is a wonderful profession and I wish you all well throughout your careers.

References

[1] Oreskes N, Conway EM. Merchants of doubt : how a handful of scientists obscured the truth on issues from tobacco smoke to global warming. 1st U.S. ed. New York: Bloomsbury Press; 2010. 355 p. p.

[2] Hewitson BC, Janetos AC, Carter TR, Giorgi F, Jones RG, Kwon WT, et al. Regional context. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, et al., editors. Climate Change 2014: impacts, adaptation, and vulnerability part B: regional aspects contribution of working group II to the fifth assessment report of the intergovernmental panel of climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2014. p. 1133-97.

[3] Cook J, Oreskes N, Peter TD, William RLA, Bart V, Ed WM, et al. Consensus on consensus: a synthesis of consensus estimates on human-caused global warming. Environmental Research Letters. 2016;11(4):048002.

[4] IPCC. Climate Change 2014: synthesis report. [Internet]. Geneva, Switzerland: Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014. [cited 2016 May] Available from: http://www.ipcc.ch/report/ar5/syr/.

[5] Forrest S, Shearman D. No time for games: children’s health and climate change [Internet]. South Australia: Doctors for the Environment Australia, 2015. [cited 2016 May] Available from: http://dea.org.au/news/article/report-no-time-for-games-childrens-health-and-climate-change1.

[6] UNHCR. Convention and protocols relating to the status of refugees. 60 Years. Geneva, Switzerland: The UNHCR: Communications and Public Relations Service. 2010. [cited 2016 May]. Available from: http://www.unhcr.org/.

[7] EASAC Working Group. Trends in extreme weather events in Europe: implications for national and European Union adaptation strategies [Internet]. European Academies Science Advisory Council, 2013. EASAC policy report 22. [cited 2016 May] Available from: http://www.easac.eu.

[8] Steffen W, Rice M. Climate Council Alert: Climate change and coral bleaching [Internet]. Australia: Climate Council of Australia, 2016. [cited 2016 May]. Available from: https://www.climatecouncil.org.au/.

[9] Cameron PA, Mitra B, Fitzgerald M, Scheinkestel CD, Stripp A, Batey C, et al. Black Saturday: the immediate impact of the February 2009 bushfires in Victoria, Australia. Med J Aust. 2009;191(1):11-6.

[10] Morris C. Wind and solar power boom worldwide 2015. [cited 2016 May]. Available from: http://energytransition.de/2016/02/wind-and-solar-power-boom-worldwide/.

[11] Watts N, Adger WN, Agnolucci P, Blackstock J, Byass P, Cai W, et al. Health and climate change: policy responses to protect public health. Lancet. 2015;386(10006):1861-914.

[12] Pope Francis. Encyclical letter Laudato Si’ of the Holy Father Francis on care for our common home (official English-language text of encyclical). Vatican: The Holy See: Libreria Editrice Vaticana, 2015.

[13] Carrington D. Norway confirms $900bn sovereign wealth fund’s major coal divestment: The Guardian; 2015. [cited 2016 May]. Available from: http://www.theguardian.com/environment/2015/jun/05/norways-pension-fund-to-divest-8bn-from-coal-a-new-analysis-shows.

[14] Meara JG, Leather AJ, Hagander L, Alkire BC, Alonso N, Ameh EA, et al. Global surgery 2030: evidence and solutions for achieving health, welfare, and economic development. Lancet. 2015;386(9993):569-624.

Categories
Guest Articles

Aiming for one hundred

A few months ago, I went to a public lecture that was the best I’ve ever had the privilege to attend. The speaker was Alan Alda – Hawkeye from the popular television series M*A*S*H – now 80 years old, and thriving. And so is the subject of his talk: his love life. He just happens to be in love with science.

My dream is for a future in which we see heroes like Alan Alda, perhaps 100 years old, standing ramrod straight at the podium. They’ll speak out with a clear voice, bright eye, sharp mind, and strong heart… and that rarest of miracles, no notes. And we’ll marvel at their wit, but barely notice their age – because living in rude health to 100 will be the norm.

Am I too bold to tack 20 years onto average life expectancy? Perhaps. Yet, look at how swiftly our expectations progress. A woman born in Australia in 1900 could expect to live to 57; and a man (even excluding those killed in war) to just 54. So the average Australian born in 1900 would die before the modern Australian has quite done with their mid-life crisis.

In just four generations, we’ve added more than 25 years to the average female life, and close to 24 years for males. Even better, as our lives extend, so too has the period we expect to enjoy disability-free. Which is just as well, given the size of the superannuation balances we’ve now got to accrue to fund two or three decades of sprightly ‘retirement’.

Science advances, and societies adjust. The challenge is to do it again. And if we achieve another 20 years, it will be in large part a testament to you: the doctors, researchers, and policymakers of the future.

You will be aided by an unimaginable suite of scientific instruments and artificial intelligence programs. Some commentators will tell you that these tools will displace the flesh-and-blood doctors we rely on today. Don’t believe them. Remember what they said about the fitness industry. First television was going to kill the local gym. Then workout videos would nail the coffin. The same for FitBits and Wi-Fi enabled rowing machines. Yet, we still choose to pay a premium for gyms and personal trainers. That premium buys the things we humans require, over and above the information we could access online: discipline, insight, and motivation. Doctors who provide those keys to health will always be in demand.

For early-career researchers, the age-old challenges of forging a career still stand. Investing in the right skills. Making the right contacts. Working out where the interest, and the money, is likely to be. Managing one of those three would be impressive. Managing all of them may not be enough in the competitive environment we operate in today.

I have seen the process of applying for a National Health and Medical Research Council (NHMRC) grant likened to The Hunger Games. I can’t speak to the experience of the young grant applicant today, but I can read the success rates, and I understand why early-career scientists express their frustration.

As Chief Scientist, I cannot offer easy answers. I do commit to work with all research funders and providers – public and private – to maximise the opportunities for Australian medical science.

There’s an old rule of thumb that science turns money into knowledge; and innovation turns knowledge into money. I’ve found that it focuses our politicians’ minds. There is bipartisan commitment at the Commonwealth level to an innovation policy framework that fosters growth in the medical device, biotechnology, and pharmaceutical sectors. It is backed by rising investment from venture capital funds in biomedical startups; and new approaches to collaboration from Vice-Chancellors and CEOs.

But all of it always comes with a rider: great science needs great equipment and great people.

If we want to build the critical mass to attract new investment in both facilities and staff, we need to keep the quality bar set high. We can pursue sensible regulatory systems that minimise the costs, for example, of clinical trials – and we need to do so to remain competitive. At the same time, our brand in the global market is excellence and reliability; a brand with particular resonance in the Asian markets we seek to develop.

Maintaining that brand calls for clarity of vision and continuity of investment. This is the principle I will emphasise across the many lines in my 2016 to-do list.

At the top of that list is the task of mapping Australia’s research infrastructure needs for the decades ahead, including the next-generation facilities. For too long, we have drifted without a long-term bipartisan commitment to funding and operating principles for our critical scientific equipment. The price we pay for uncertainty is the loss of our best people. I am honoured to be leading this landmark review, and welcome the contribution that medical researchers have already made.

So what would be my advice to you?

First, pursue medical science because you love it. Learn your discipline deeply and don’t rely on the plethora of fact-finding tools. When you are dealing with a nervous patient you need the knowledge at your fingertips. Trust me, it’s the same with a footloose investor. And when you’re brainstorming ideas with your supervisor, or lying in bed with ideas surging through your mind, deep knowledge takes the training wheels off your imagination.

Second, keep the doors of opportunity open. If you love research, why not consider an industry role? If you love making things, why not make a product or a startup? If you love engineering systems, why not engineer a company as the CEO? If I had one wish, it’s that Australians would see all the valuable transferrable skills that come with science training, and most of all, a science PhD. Employers will only be able to see those skills if graduates recognise and cultivate them within themselves.

Third, be strong in pursuit of that precious 20-year extension to the average Australian life. We need all the advocates for evidence-based science we can get, given all the snake oil we’re ingesting today. As a society, we’ll progress no further than our shared understanding of the values science allows. Stand with Alan Alda, in the advance guard.

So, I’m aiming for 100. My grandchildren will aim for more. My great-great-grandchildren might ring in the 23rd century. I thank you today, on their behalf, and wish you well.

Categories
Guest Articles

Hacking Medical Education with FOAM

 

“There’s no charge for awesomeness…”

­— Kung Fu Panda

Hacking medical education!?

‘Hacking Medical Education with FOAM’… ‘What?’ I hear you whisper under your breath. A title like that deserves an explanation, I agree.

To many of us, hacking means “gaining unauthorised access to data in a system or a computer” [1]. This works for me because I have often found that access to knowledge, and how to make the most of it, is not always transparent in medicine. However, the definition of ‘hacking’ that I like the best is, “to modify or write… in a skillful or clever way” [1]. I think FOAM or Free Open-Access Med(ical Ed)ucation helps do these things [2,3].

I should also clarify what I mean by medical education. I don’t mean medical school… Or at least not just medical school, which is somewhat arbitrarily bound by examinations and assessments. Indeed, I have to agree with Sir William Osler who claimed that “Perfect happiness for student and teacher will come with the abolition of examinations, which are stumbling blocks and rocks of offense in the pathway of the true student” [4]. Yet, even the great Osler, the man who brought bedside teaching to North America, knew that ‘assessment drives learning’: “I do not know of any stimulus so healthy as knowledge on the part of the student that he will receive an examination at the end of his course. It gives sharpness to his dissecting knife, heat to his Bunsen burner, a well worn appearance to his stethoscope, and a particular neatness to his bandaging” [4]. However, what I am really writing about is how FOAM can be used to achieve lifelong learning in medicine, learning that begins in medical school but, hopefully, continues forever after.

FOAM

FOAM is a dynamic collection of free educational resources available online and largely shared via social media [2,3]. These resources include blogs, podcasts, videos, tweets, graphics, animations, and more. However, FOAM is more than just resources; it is an interactive community of like-minded individuals bound by a common ethos. The FOAM ethos holds high quality educational resources that can and should be available, free of charge, to anyone who helps people with health problems.

There are now at least 316 blogs and podcasts creating these resources worldwide in my specialties of emergency medicine and critical care alone [5]. It has also culminated in the Social Medical and Critical Care Conference (SMACC) [6], which provides a physical meeting place for this community and releases all talks as FOAM. The next SMACC will be held in Berlin, Germany in June 2017.

Importantly, these resources are available to anyone, anytime, anywhere. This makes them ideally suited for ‘just in time’ learning at the point of care. They help provide interpretations of the published literature by practicing clinicians as well as approaches to problems when there is no good evidence informing the topic. They also provide an additional means of tacit knowledge sharing, the ‘on the job’ ‘know how’ that can never be found in textbooks or journals [7]. Furthermore, FOAM is another way in which we can socially construct knowledge and learn from, and with, our peers [8].

Arghh, information overload!

Given this explosion of resources, many people worry about information overload – but that is a myth – the real problem is ‘filter failure’ [9]. If you determine your knowledge needs, and connect with other people you trust – via TwitterTM, for instance, the high quality, relevant resources will ‘bubble up’ through your network of filters making it likely that you will find what you need. Try searching for the #FOAMed hashtag (not #FOAM!) to see what is out there [10]. Alternatively, if connecting with people is not your thing, you can use the GoogleFOAM search engine [11] or read ‘The LITFL Review’, a weekly FOAM summary on lifeinthefastlane.com [12]. Some people argue that they don’t have time to use social media for medical education. Others would respond that, if used correctly, you don’t have time not to [13].

Is there a curriculum?

The bare facts of life as a learner in medicine are that you have to earn your stripes – usually through passing exams… and many exams await the medical trainee. FOAM can help students master the medical school curriculum and pass the inevitable exams. Indeed, there are now resources such as FOAMmedstudent.com specifically designed for medical students [14]. However, FOAM itself has no defined curriculum, and it does not need one [15]. To do our best for our patients we must all create our own ‘internal curriculum’. This is the path of learning we each must journey along to become the doctor we want to be, practicing the type of medicine we want, and looking after the particular patients that we will actually encounter. Textbooks and prescribed curricula are not sufficient – we must learn from our patients, our colleagues, the published literature, and FOAM.

Goodbye, bedside mentor?

As a learner it is easy to get caught up in the engaging nature of FOAM resources, the fancy graphics, and the funky podcast intro music. However, FOAM is just an adjunct to learning and nothing ever replaces the bedside mentor. One of my own former teachers was Auckland-based pathologist, Professor Tim Koelmeyer, who would constantly remind us that the patient is “our first, last, and only teacher” [16]. What he meant was that real learning takes place at the bedside, where it is facilitated by experienced clinicians who help students make sense of what patients are trying to teach them. Similarly, these experienced clinicians are vital for helping the inexperienced make sense of FOAM resources. In particular, junior trainees must always be supervised and should never institute what they have learned from FOAM without discussion with their seniors first. This is important because medical knowledge (regardless of the source) can be taken out of context and does not apply to all settings or may require a specific skill set to be safely used. In turn, learners can help their teachers by suggesting that engaging FOAM resources be used in a ‘flipped classroom’ model [17]. Learners can watch, read, or listen at home and then come prepared for meaningful discussions and active learning sessions in the workplace facilitated by an expert. In this way, FOAM does not replace the bedside mentor, but helps learning happen.

Caveat emptor!

Critical thinking skills, for some reason, are often not explicitly taught in schools or universities [18]. However, I firmly believe that critical thinking is the hallmark of the expert clinician. Critical thinking and decision making skills are what link evidence from the literature, to clinician expertise, the patient’s individual circumstances and the setting in which it occurs [18]. Importantly, if we want to thrive in medicine – and have our patients thrive too – we need to learn from multiple sources of information and we have to critically evaluate them all rather than blindly applying them. Which raises the question, how do we know if a source of information is reliable?

I have developed a brief list of questions that I use to assess the quality of FOAM resources before using them, though they can be applied to almost any source of information.

  1. Is the author identifiable?
    (If a FOAM resource is anonymous, sound the alarms!)
  2. What are the author’s qualifications?
    (This does not mean a student’s blog should be ignored, it just helps put it in context. At the other extreme, beware of ‘Arguments from Authority’ that lack any other basis.)
  3. Are there conflicts of interest?
    (Beware of financial conflicts in particular, including Big Pharma’s influence on the published medical research.)
  4. Does what I know check out?
    (I’m reassured to an extent if the author has written about topics that I do know about and did a good job, however, an expert in one sphere is not necessarily an expert in another!)
  5. Is it logical?
    (Does the author commit logical fallacies?)
  6. Is it referenced?
    (Claims should be referenced appropriately so they can be verified.)
  7. Is it supported by trusted recommendations?
    (Do other people I trust rate the resource highly?)
  8. How does the author respond to criticism?
    (No one is right all the time – and if we truly base our knowledge on science, then nearly everything we know will be falsified or revised in the future. I am reassured by authors that respond to constructive feedback openly and are willing to make improvements as part of a post-publication peer review process.)

Critical thinking is perhaps the most useful medical education hack in your armoury. It is a pre-requisite for using FOAM, or any other source of information, effectively. Unfortunately, for various reasons, even most published medical literature is false [19,20]. FOAM can be a mixed bag. Caveat emptor!

Learn using learning science

Now is an exciting time to be a learner because scientists are actually figuring out how people learn effectively [21,22]. Although much of this work from the cognitive science and educational psychology literature has yet to be validated in the world of medical education, we are silly if we ignore it. Fortunately, FOAM can neatly integrate with many of the principles of the new science of learning.

First, cognitive scientists tell us that we are actually quite good at putting things into our memories, then the challenge comes when we try to recall them at the right time and in the right form. To get good at memory retrieval, we have to practice retrieving. This can be done by testing oneself, using the so-called ‘test effect’ [21,22]. Retrieval practice is even more effective when it takes place in similar contexts to that which we are training for, such as the examination hall or the patient’s bedside. FOAM resources such as the case-based ‘show-hide’ answer blog posts on Lifeinthefastlane.com, BroomeDocs.com, and INTENSIVEblog.com are well suited for such practice [23-25]. Retrieval practice is even more effective when we combine the test effect with spaced repetition. We make stronger, more retrievable memories if we exercise our recall when we are just on the verge of forgetting. Spaced repetition software are available that have built in algorithms that allow us to do this with virtual flashcards [26]. Fortunately, FOAM resources, which are free to reuse and modify with appropriate attribution, can easily be cut-and-pasted into flashcards or linked from them for this purpose.

FOAM also lends itself to ‘interleaving’, another effective learning strategy [21,22]. An analogy is, the batsman who will see greater improvements during practice if they do not know what type of delivery is coming next. This is because they will get better at discriminating between different types of deliveries and thus perform better under real world conditions. Similarly, we can better prepare ourselves by mixing up problem types and topics when preparing for an exam and/or when preparing to work in the real world of medicine. Progress may seem slower, but the long-term benefits are likely to be greater.

Becoming a FOAM creator is also an effective way of boosting your own learning, and was a major motivation for my own involvement as a trainee. Education scientists tell us that we need to engage in reflection by taking the time to review experience so that we can learn from it [21,22]. The creation of a blog is an excellent tool for reflection, but we must ensure that anything we write is fictionalised and never based on a particular patient unless valid consent is obtained. Patient safety and confidentiality must never be compromised, whether inadvertent or otherwise.

Calibration is the last principle of effective learning that I will mention. Without calibration we can easily become self-deluded learners. Calibration involves the learners aligning their own judgements of their state of knowledge or learning with objective feedback [21,22]. This is another reason why testing yourself on questions is so effective for learning. Being subjected to post-publication peer review through the creation of FOAM resources is also a powerful learning experience. Few things sharpen your understanding or thicken your skin better than open dialogue with intelligent people about something you have just created.

Last words

There you have it, my tips for ‘hacking medical education’ using FOAM with the support of insights from the evolving science of learning and an emphasis on the importance of critical thinking skills. Ultimately, we must always remember that FOAM is simply an adjunct to learning that aims to help, rather than to replace, our bedside mentors. Furthermore, these ‘hacks’ are not shortcuts. There is no easy way in learning, indeed Osler said that, ‘work’ was the ‘Master Word’ in medicine [4]. True learning is always hard work, but this hard work is worth it, as through it we can improve patient outcomes, relieve suffering, and save lives.

“It is up to us to save the world!”
— from Peter Safar’s Laws for the Navigation of Life [27].

Author disclosures

I have no financial conflicts of interest to declare.

I am heavily involved in the creation of FOAM resources and the FOAM community described in this article. I am co-creator of the following FOAM resources mentioned in this article: Lifeinthefastlane.com, SMACC and INTENSIVE.

References

[1] The definition of hacking [Internet]. Dictionary.com. 2016 [cited 13 March 2016]. Available from: http://www.dictionary.com/browse/hacking

[2] Nickson CP, Cadogan MD. FOAM / FOAMed – Free Open Access Medical Education [Internet]. Lifeinthefastlane.com. 2012 [cited 14 March 2016]. Available from: http://lifcom/foam/

[3] Nickson CP, Cadogan MD. Free Open Access Medical education (FOAM) for the emergency physician. Emerg Med Australas. 2014;26(1):76-83.

[4] Osler W, Silverman M, Murray T, Bryan C. The quotable Osler. Philadelphia: American College of Physicians; 2002.

[5] Cadogan MD. Emergency medicine and critical care blogs EMCC [Internet]. Lifeinthefastlane.com. 2016 [cited 14 March 2016]. Available from: http://lifeinthefastlane.com/resources/emergency-medicine-blogs/

[6] SMACC [Internet]. SMACC. 2016 [cited 14 March 2016]. Available from: http://www.smacc.net.au

[7] Peach P. Technology, tacit knowledge and collective competence [Internet]. SMACC. 2014 [cited 14 March 2016]. Available from: http://www.smacc.net.au/2014/10/technology-tacit-knowledge-and-collective-competence/

[8] Cabrera D, Roland D. FOAM and the Rhizome: An interconnected, non-hierarchical approach to MedEd [Internet]. ICE Blog. 2015 [cited 14 March 2016]. Available from: http://icenetblog.royalcollege.ca/2015/01/27/foam-and-the-rhizome-an-interconnected-non-hierarchical-approach-to-meded/

[9] Nickson CP. Information overload in the age of Free Open-Access Meducation (FOAM) [Internet]. Lifeinthefastlane.com. 2009 [cited 14 March 2016]. Available from: http://lifeinthefastlane.com/information-overload/

[10] News about #foamed on Twitter [Internet]. Twitter.com. 2016 [cited 14 March 2016]. Available from: https://twitter.com/search?q=%23foamed

[11] GoogleFOAM [Internet]. GoogleFOAM. 2016 [cited 14 March 2016]. Available from: http://googlefoam.com/

[12] LITFL review [Internet]. Lifeinthefastlane.com. 2016 [cited 14 March 2016]. Available from: http://lifeinthefastcom/litfl/litfl-review/

[13] Smith R. Meet and learn from Dr Twitter [Internet]. Blogs.bmj.com. 2016 [cited 14 March 2016]. Available from: http://blogs.bmj.com/bmj/2012/10/30/richard-smith-meet-and-learn-from-dr-twitter/

[14] com [Internet]. 2016 [cited 14 March 2016]. Available from: http://FOAMmedstudent.com

[15] Nickson CP. We don’t need no FOAM curriculum [Internet]. Lifeinthefastlane.com. 2013 [cited 14 March 2016]. Available from: http://lifeinthefastlane.com/we-dont-need-no-foam-curriculum/

[16] Nickson CP. The Breakfast Club | LITFL: Life in the fast lane medical blog [Internet]. Lifeinthefastlane.com. 2009 [cited 14 March 2016]. Available from: http://lifeinthefastlane.com/the-breakfast-club/

[17] Prober C, Heath C. Lecture Halls without Lectures — A Proposal for Medical Education. N Engl J Med. 2012;366(18):1657-1659.

[18] Jenicek M, Croskerry P, Hitchcock D. Evidence and its uses in health care and research: The role of critical thinking. Med Sci Monit. 2011;17(1):RA12-RA17.

[19] Ioannidis J. Why most published research findings are false. PLoS Med. 2005;2(8):e124.

[20] Young N, Ioannidis J, Al-Ubaydli O. Why current publication practices may distort science. PLoS Med. 2008;5(10):e201.

[21] Dunlosky J, Rawson K, Marsh E, Nathan M, Willingham D. Improving students’ learning with effective learning techniques: promising directions from cognitive and educational psychology. Sci. Public Interest. 2013;14(1):4-58.

[22] Brown P, Roediger H, McDaniel M. Make it stick. Harvard University Press/Belknap; 2014.

[23] Clinical Cases in Emergency Medicine and Critical Care [Internet]. Lifeinthefastlane.com. 2016 [cited 14 March 2016]. Available from: http://lifeinthefastlane.com/education/clinical-cases/

[24] Parker C. Clinical Cases – Broome Docs [Internet]. Broome Docs. 2016 [cited 14 March 2016]. Available from: http://broomedocs.com/category/clinical-cases/

[25] Labs and Lytes[Internet]. INTENSIVE. 2016 [cited 14 March 2016]. Available from: http://intensiveblog.com/labs-lytes/

[26] Nickson CP. Learning by Spaced [Internet]. Lifeinthefastlane.com. 2011 [cited 14 March 2016]. Available from: http://lifeinthefastlane.com/learning-by-spaced-repetition/

[27] Nickson CP. Peter Safar’s laws for navigation of life [Internet]. Lifeinthefastlane.com. 2009 [cited 14 March 2016]. Available from: http://lifeinthefastlane.com/laws-for-the-navigation-of-life/

Categories
Original Research Articles

Evaluating women’s knowledge of the combined oral contraceptive pill in an Australian rural general practice setting

Background: In addition to the contraceptive action of the combined oral contraceptive pill (COCP), there are a number of other benefits to its use such as menstrual cycle regulation. However, COCP use is also associated with a higher risk of thromboembolism. Despite the prevalence of COCP use, studies have indicated that overall women have poor knowledge of the COCP. Aim: To evaluate women’s knowledge of the COCP in a rural general practice setting. The extent of knowledge was assessed in several domains including: COCP use and effectiveness, mechanism of action, and the risks and benefits of COCP use. Methods: An observational study design was utilised. Women aged 18-50 years self-selected to complete an anonymous survey at a general practice in rural NSW. Women who were currently using, had previously used, or had never used the COCP were invited to participate. Women using a progesterone-only contraceptive were excluded. A total knowledge score on the usage and effects of the COCP was calculated for each participant by assessing responses to 34 questions for an overall score out of 34. Results: A total of 80 surveys were completed revealing that 98% of respondents used the COCP at some time in their lives with almost 29% being current users. The mean total knowledge score for all participants was 14.4 (SD = 4.9) out of a possible 34 (range: 5 – 26). There was no significant difference in total knowledge score between current and previous users (p = 0.56). Conclusion: The women surveyed in this study appear to have substantial gaps in their knowledge of the COCP. This study provides insight into specific knowledge areas that require further education and clarification during COCP counselling sessions (especially those conducted by a GP) to encourage improved knowledge of the COCP by women in this particular setting.

Introduction

The combined oral contraceptive pill (COCP) is an oral hormonal contraceptive that contains synthetic oestrogen and progesterone. Since it was first made  available in Australia in 1961, the COCP has become the principal contraceptive method of choice among Australian women [1]. Contraceptive management is a common reason for GP consultation, with the COCP being the most frequently prescribed contraceptive [1].

Though it is well known for its contraceptive action, there are a number of additional benefits associated with COCP use [2-11]. There is decreased risk of ovarian and endometrial cancers [2,3,5,6] and reduced risk of benign breast disease, functional ovarian cysts, ectopic pregnancies, and pelvic inflammatory disease [2-4,7]. The COCP is also beneficial in that it helps to regulate the menstrual cycle, and reduces dysmenorrhoea, menorrhagia, and endometriosis-associated pain [2,3,8,9]. Acne and the effects of hyperandrogenism may also be minimised with COCP use [2-4,10].

Despite these many benefits, there are several risks associated with COCP use. The introduction of low-dose COCPs saw a significant improvement in its safety profile, particularly in the reduction of thromboembolism [2,3]. Nonetheless, COCP use does increase the risk of thromboembolism, stroke, and myocardial infarction [2,3,12,13]. This is a rare complication in otherwise healthy women [2]. Women over the age of 35, smokers, and women who are obese have a higher risk of thromboembolism with COCP use [11,14]. The evidence is mixed as to whether the COCP increases the risk of breast cancer [2,15]. The current consensus is that the COCP does increase risk, but this risk is considered to be very small (equal to approximately one extra case per year for every 100,000 women) and becomes negligible ten years after cessation of use [15,16], however, research is still ongoing.

The COCP has been shown to be a very effective contraceptive with perfect use (the failure rate is 0.3%), however, its typical-use failure rate is as high as 9% [17,18]. These figures were generated by an American study by Trussell [18] and are frequently utilised in Australian literature. The typical-use rate is most commonly attributed to incorrect or inconsistent use [2]. Thus, unplanned pregnancy is an important risk for women taking the COCP to consider. There is little data to suggest that sound knowledge of the COCP correlates to improved behavioural changes and related outcomes such as unintended pregnancies [19,20]. Nevertheless, a better understanding of this common medication is likely to be a significant contributing factor in the reduction of the current failure rate which is why studies assessing women’s knowledge of the COCP are important.

Research conducted in a diverse range of settings has indicated that women’s knowledge of the COCP is generally poor [11,19,21-24]. A comprehensive search of the current literature, however, revealed a paucity of studies focusing on such knowledge amongst rural Australian women, with only one Australian study focusing on women’s knowledge of the COCP from a national perspective [11]. Furthermore, there were no international studies focusing on a rural perspective in their study populations. As such, this study aimed to evaluate the level of knowledge women attending an Australian rural general practice have regarding the COCP. The extent of knowledge was assessed through several domains including: COCP use and effectiveness, mechanism of action, and the potential risks and benefits of COCP use.

Methods

Participants

Participants eligible for inclusion were women of reproductive age, between 18 and 50 years, who were patients of a New South Wales rural general practice, and who attended the practice during the study period. Women who were currently using or had previously used the COCP were invited to participate, as were women who had never taken the COCP. Male patients and women taking a progesterone-only oral contraceptive were excluded from this study due to the nature of the research question. A total of 80 responses were collected and all were used in data analysis.

Study design and survey

This study utilised an observational study design through the provision of a survey to participants. The survey included two basic demographic questions (age and level of education) and five questions assessing personal COCP usage patterns. The questions assessing knowledge covered several domains including: COCP use and effectiveness, mechanism of action, and the potential risks and benefits of COCP use. Additionally, participants were asked about their information sources regarding the COCP.

Recruitment and data collection

Women attending the medical practice self-selected to complete the survey. Participant information sheets were attached to each survey and were made available at the reception desk of the practice. Posters advertising the survey were also displayed in the waiting room area. Participation was entirely voluntary and anonymous, with consent being implied from completion of the survey. Completed surveys were returned to a secure box at the reception desk, with access to returned surveys and subsequent generated data being limited exclusively to the lead researcher. Data collection occurred between October and December 2014.

Ethics approval was granted by the University of Wollongong (UoW) Human Research Ethics Committee in collaboration with the UoW Graduate School of Medicine.

Statistical analysis

Survey data was processed using Microsoft Excel™. P-values were calculated for correct scores between current and previous COCP users using z-scores with a significance level of ≤ 0.05.

A “total knowledge score” was also calculated for each participant by combining the total marks for questions 8, 10, and 11 of the survey, where one mark was awarded to each correct response. Question 8 comprised a total of 6 sub-questions, question 10 comprised 13 and question 11 had 15. As such, the maximum possible score for these questions was 34. The mean total knowledge score was subsequently calculated by averaging the values amongst all the participants. The total knowledge scores of current COCP users versus previous users were analysed using the Mann-Whitney “U test” with a significance level of ≤ 0.05.

For the purpose of this study, a score of 80% or above for each individual response item was designated as an adequate level of knowledge.

Results

Sample characteristics

In total, 80 responses were received during the study period. Table 1 shows basic demographic information of the study participants. The mean age of the sample was 32.1 years (standard deviation = 8.8).

Table 1: Demographic information of sample (n = 80)

Variable n (%)
Q.1 Age (years)
18-20 8 (10%)
21-24 17 (21%)
25-30 10 (13%)
31-34 17 (21%)
35-40 11 (14%)
40-50 17 (21%)
Q.2 Education level
Year 10 18 (23%)
Year 12 24 (30%)
Undergraduate degree 16 (20%)
Postgraduate degree 6 (8%)
TAFE qualification 12 (15%)
Other 4 (5%)

Personal COCP usage information

Of the respondents, 98% (n = 78) had taken the COCP at some point in their lives (question 3 of the survey). Further information regarding usage for women who had previously or were currently taking the COCP is listed in Table 2. Women who had never taken the COCP were not required to complete these questions (questions 4 to 7).

Table 2: Usage information for women who are currently using or have previously used the COCP

Variable n (%*)
Q.4 Current COCP usage (n = 78)
Yes 23 (29%)
No 55 (69%)
Q.5 Duration of COCP usage (n = 77)
< 1 year 5 (6%)
1 – 5 years 29 (36%)
5 – 10 years 17 (21%)
> 10 years 26 (33%)
Q.6 Has an active tablet ever been missed? (n = 78)
Yes 64 (80%)
No 13 (16%)
Don’t Know 1 (1%)
Q.7 Frequency of missing an active tablet (n = 77)
Never 12 (15%)
Only one time 4 (5%)
Once a year 11 (14%)
Once every few months 30 (38%)
Once a month 16 (20%)
Once a week 4 (5%)

*Percentages calculated using the total sample (n = 80)

Knowledge domains

COCP use and effectiveness

Participants were asked to complete questions that assessed their general knowledge of the COCP and of what factors may reduce the COCPs contraceptive effect.

In terms of general knowledge (question 8 of the survey), 96% of participants correctly identified that the COCP needs to be taken every day to serve as effective contraceptive, with 94% correctly identifying that it should be taken at the same time every day. Only 28% of women were aware that the COCP is not the most effective contraceptive currently available with 13% of current COCP users selecting the correct answer (compared to 35% of previous users).

Of the factors that may reduce the contraceptive effect of the COCP (question 10), missing one active pill by more than 12 hours and missing more than one active pill was correctly identified by 84% and 94% of women respectively. Other factors that potentially reduce contraceptive effect (with percentage of participants selecting the correct response in brackets) are as follows: St John’s wort (20%), epilepsy medications (14%), vomiting (79%), and severe diarrhoea (61%). Two-thirds of women incorrectly identified that antibiotics (other than rifampicin and rifabutin) may be a factor that reduces contraceptive benefit. There was no significant difference in the number of participants selecting the correct response between current and previous COCP users for each of the factors investigated. Participant responses are further detailed in Table 3.

Table 3: Participant responses to general knowledge questions relating to the COCP and factors that may reduce its contraceptive action

  Yes No Don’t know No response Number of current COCP users correct (n = 23) Number of previous COCP users correct

(n = 55)

P-value

(significance ≤ 0.05)

Q.8 General knowledge
The pill needs to be taken every day to be an effective contraceptive *77 (96%) 1 (1%) 2 (3%) 22 (96%) 53 (96%) 0.88
The pill should be taken at approximately the same time every day *75 (94%) 3 (4%) 2 (3%) 23 (100%) 51 (93%) 0.18
It is acceptable to continue taking active tablets without taking the inactive tablets in between *43 (54%) 16 (20%) 21 (26%) 12 (52%) 31 (56%) 0.73
The pill is the most effective form of contraception currently available when used correctly 44 (55%) *22 (28%) 14 (18%) 3 (13%) 19 (35%) 0.054
It is possible to fall pregnant while taking the pill even with perfect use *63 (79%) 10 (13%) 6 (8%) 1 (1%) 16 (70%) 45 (82%) 0.23
It is important to take a break from using the pill 26 (33%) *20 (25%) 34 (43%) 6 (26%) 14 (25%) 0.95
Q.10 Factors that may reduce the contraceptive benefit of the COCP
Missing one active pill by less than 12 hours 25 (31%) *34 (43%) 17 (21%) 4 (5%) 11 (48%) 23 (42%) 0.62
Missing one active pill by more than 12 hours *67 (84%) 6 (8%) 7 (9%) 19 (83%) 48 (87%) 0.58
Missing more than one active pill *75 (94%) 1 (1%) 3 (4%) 1 (1%) 23 (100%) 51 (93%) 0.18
Missing one or more inactive pill/s 22 (28%) *43 (54%) 14 (18%) 1 (1%) 14 (61%) 28 (51%) 0.42
St John’s Wort herbal preparation *16 (20%) 9 (11%) 55 (69%) 5 (22%) 11 (20%) 0.86
Epilepsy medications such as phenytoin or carbamazepine *11 (14%) 3 (4%) 66 (83%) 3 (13%) 8 (15%) 0.86
Vomiting *63 (79%) 5 (6%) 12 (15%) 19 (83%) 44 (80%) 0.79
Severe diarrhoea *49 (61%) 10 (13%) 21 (27%) 15 (65%) 34 (62%) 0.78
Smoking 6 (8%) *36 (45%) 38 (48%) 9 (39%) 26 (47%) 0.51
Antibiotics such as rifampicin and rifabutin *53 (66%) 3 (4%) 24 (30%) 14 (61%) 38 (69%) 0.48
Other antibiotics

(When taken without side-effects like vomiting/diarrhoea)

53 (66%) *2 (3%) 25 (31%) 0 (0%) 2 (4%) 0.35
Minor alcohol consumption

(e.g. an occasional alcoholic drink/s not on a regular basis)

6 (8%) *52 (65%) 22 (28%) 17 (74%) 35 (64%) 0.38
Excessive alcohol consumption

(e.g. drinking amounts that cause vomiting, diarrhoea, poor  concentration or memory, or significant liver damage)

*43 (54%) 13 (16%) 24 (30%) 10 (43%) 32 (58%) 0.23

*Indicates the correct answer

Mechanism of action

Only 58% of women surveyed correctly identified that the COCP acts to prevent ovulation; this represented 44% of current COCP users and 64% of previous COCP users. Furthermore, only 3% of the study sample correctly identified all three mechanisms of action (preventing ovulation, thickening of cervical mucus, and helping to prevent adherence of the embryo to the endometrium).

Risks and benefit of COCP use

Frequencies of responses to questions assessing knowledge of the potential risks and benefits of the COCP are shown in Table 4. The conditions in which COCP use may be beneficial (with the percentages of participants selecting the correct responses listed in brackets) were as follows:  menstrual disturbances (60%), acne (56%), endometriosis-associated pain (28%), ectopic pregnancy (9%), and ovarian and endometrial cancer (6%). Fifty-nine percent of women correctly identified that the COCP has no effect on the risk of contracting a sexually transmitted infection (STI). Furthermore, weight gain was incorrectly identified as a risk associated with taking the COCP by 75% of women with only 5% of participants selecting the correct answer of “no effect”. COCP use increases the risk of cardiovascular disease which 39% of women correctly identified. For the majority of these questions, “don’t know” was the response selected by a large proportion of participants.

Table 4: Participant responses regarding effects of the COCP on level of risk for various conditions

Q.11 Decreases No effect Increases Don’t know No response Number of current COCP users correct (n=23) Number of previous COCP users correct

(n=55)

P-value

(significance ≤ 0.05)

Ectopic pregnancy *7 (9%) 18 (23%) 11 (14%) 44 (55%) 2 (9%) 4 (7%) 0.83
Birth defects 2 (3%) *33 (41%) 8 (10%) 37 (46%) 4 (17%) 29 (53%) 0.004
Infertility 3 (4%) *30 (38%) 14 (18%) 33 (41%) 9 (39%) 21 (38%) 0.94
Cardiovascular disease

(stroke, hypertension, clots)

2 (3%) 14 (18%) *31 (39%) 33 (41%) 10 (43%) 21 (38%) 0.66
Benign breast disease *4 (5%) 17 (21%) 16 (20%) 42 (53%) 1 (1%) 0 (0%) 4 (7%) 0.18
Functional ovarian cysts *9 (11%) 12 (15%) 11 (14%) 47 (59%) 1 (1%) 4 (17%) 5 (9%) 0.29
Endometriosis-associated pain *22 (28%) 9 (11%) 3 (4%) 45 (56%) 1 (1%) 8 (35%) 14 (25%) 0.41
Breast cancer 4 (5%) 17 (21%) *18 (23%) 41 (51%) 6 (26%) 13 (22%) 0.82
Ovarian cancer *5 (6%) 18 (23%) 11 (14%) 46 (58%) 2 (9%) 3 (5%) 0.59
Endometrial cancer *5 (6%) 18 (23%) 7 (9%) 50 (63%) 1 (4%) 4 (7%) 0.63
Menstrual disturbances *48 (60%) 6 (8%) 9 (11%) 13 (16%) 4 (5%) 12 (52%) 35 (64%) 0.35
Acne *45 (56%) 4 (5%) 14 (18%) 16 (20%) 1 (1%) 11 (48%) 33 (60%) 0.32
Weight gain 1 (1%) *4 (5%) 60 (75%) 13 (16%) 2 (3%) 1 (4%) 3 (5%) 0.84
Pelvic inflammatory disease *6 (8%) 14 (18%) 9 (11%) 50

(63%)

1 (1%) 2 (9%) 4 (7%) 0.83
Sexually transmitted infections 4 (5%) *47 (59%) 7 (9%) 20 (25%) 2 (3%) 11 (48%) 36 (65%) 0.12

*Indicates the correct answer

Question 12 of the survey asked women to identify factors that can potentially increase a women’s risk of thromboembolism while taking the COCP. The most frequently identified risk factors were smoking and obesity (selected by 74% and 69% of participants, respectively). Only 38% correctly identified all three risk factors, which also includes age greater than 35 years [11,14].

Information sources

Participants were asked where they source information regarding the COCP for question 13 of the survey. “General practitioner” was the most frequently selected option at 90% (n = 72). Further response details are shown in Figure 1.

v7_i2_o2_f1

Figure 1: Survey participants’ information sources regarding the COCP

Total knowledge score

The mean total knowledge score for all participants was 14.4 (SD = 4.86) out of a possible 34 (range = 5 to 26). The mean total knowledge score for current COCP users was 14.0 (SD = 4.81), with previous COCP users achieving a mean score of 14.8 (SD = 4.75). Women who had never used the COCP achieved a mean total knowledge score of 6.5. There was no significant difference in total knowledge score between current and previous users of the COCP (p = 0.56).

Discussion

This study has found deficiencies in women’s knowledge of the COCP in all domains that were assessed. This finding is consistent with the available literature [11,19,21-24]. For the purpose of this study, a score of 80% or above for each individual response item was designated as an adequate level of knowledge. The rationale for stating an arbitrary value such as this was influenced by a recent systematic review by Hall et al. [19]. Though many studies concluded women have a poor level of knowledge regarding oral contraceptives, Hall et al. stated that of the studies they included for review, “what constituted deficient or adequate knowledge was not clearly defined”. The majority of women did not score above the required 80% correct responses to be considered adequate knowledge. No significant differences were found in the number of correct responses per question between current COCP users and previous users except for one question regarding whether the COCP has an effect on the risk of birth defects occurring (p = 0.004). Furthermore, the total knowledge score for both current and previous COCP users was less than 50% of the possible maximum score.

Several key findings discussed below stand out as being important focus areas for improved contraceptive counselling.

COCP use and effectiveness

This study revealed that 55% of women believe the COCP is the most effective form of contraception currently available when used correctly, with only 13% of current COCP users correctly identifying that it is not. Examples of contraception that have a better failure rate profile than the COCP include long-acting reversible contraceptives (LARC) such as the implantable rod (typical and perfect-use failure rate 0.05%), and intrauterine devices such as the Mirena (typical and perfect-use failure rate 0.2%) [17].

Women were not aware that antibiotics (other than rifampicin and rifabutin) were no longer considered to have a negative impact on the contraceptive effect of the COCP [25], with 66% of women indicating that taking antibiotics (without side effects such as vomiting and diarrhoea) would reduce the contraceptive effect of the COCP.

There were mixed results regarding whether it is important to take a break from the COCP with 25% of women correctly identifying there is no requirement for a break. Interestingly, Philipson, Wakefield, and Kasparian [11] found that 25.6% of their participants thought that it was healthy to stop COCP use for a while (length of time was not stipulated in the question).

Mechanism of action

Only 58% of women correctly identified the main mechanism by which the COCP works, with 3% correctly identifying all three mechanisms. A systematic review by Hall et al. [19] found that understanding of the mechanism of action is infrequently assessed in similar studies. A study by Rajasekar and Bigrigg [23] not included in the aforementioned review found that 81.5% of women understood that the oral contraceptive prevented ovulation every month, but that 32% also thought that it killed sperm.

Risks of COCP use

Of the study participants, 39% correctly identified that the COCP increases the risk for cardiovascular disease (hypertension, stroke, and other thromboembolic events). Similarly, Philipson, Wakefield, and Kasparian [11] found that 46.5% women identified an increase in blood clots. Although 74% of women in our study identified smoking as a factor that when combined with the COCP increases thromboembolism risk further, only 38% of women correctly identified all three risk factors (obesity, age over 35 years, and smoking).

Women appear to erroneously believe that the COCP causes weight gain (75% of respondents). A causal relationship has never been established. A Cochrane Review has found there is no significant difference in weight change between placebo and those taking combined contraceptives, though further research was indicated [26]. Previous studies suggest similar results. Fletcher, Bryden, and Bonin [27] found that 30.6% of respondents were concerned about weight gain on the pill, with 23.4% of respondents reporting weight gain as an experienced side effect. Gaudet et al. [28] found that 51.5% of respondents thought weight would increase on the pill.

Only 59% of women were aware that the COCP has no effect on contracting STIs, with 48% of current COCP users identifying the correct answer. This result is lower than that found by Philipson, Wakefield, and Kasparian [11] with 81.3% of their respondents identifying the correct answer.

Benefits of COCP use

There was a low level of understanding regarding decreased ovarian and endometrial cancer risk, but a better (though still low) understanding that COCP use can improve acne and menstrual disturbances. Poor understanding about COCP benefits appears consistent among studies with Philipson, Wakefield, and Kasparian [11] finding 13.7% correctly identified that COCP use decreases ovarian cancer risk, with 10% identifying decreased risk of endometrial cancer.

Study limitations

Noting that approximately 29% of this study sample is currently taking the COCP, one might consider that knowledge would be forgotten after having ceased the COCP or after changing contraceptive methods. Additionally, it cannot be expected that women will remember all details relating to the COCP, as with any medication. Significant limitations of this study include the small response rate, which is likely due to the self-selection of participants. A self-selection bias may also exist. We can see from the results that there were very few women who had never taken the pill completing the survey. We must consider whether this is a true representation, or whether this may reflect the fact that women who have previously taken or are currently taking the COCP are more likely to complete the survey (perhaps due to a perceived familiarity with the topic). As the study was conducted in a general practice, a bias may also exist towards women who are likely to attend such medical facilities. An additional limitation of this study is that data was generated out of a single general practice and therefore the results may reflect specific factors associated with the GPs working there. Due to how the study was implemented, it cannot be determined if the participants had ever received contraceptive counselling from the practitioners within this centre, or whether a single or multiple GPs from this practice may have been involved in the counselling and prescribing of the COCP. At the time the study was conducted, seven GPs were working within the practice and so participants are likely patients of a number of these GPs with no particular focus on an individual practitioner’s patient list. Both the self-selection and single-centre nature of this study means that the results cannot be generalised. The survey was developed after a review of current literature and did not come from a validated source. Assessment of the reading level of the survey and a pilot study prior to data collection would improve the validity of the findings. Additionally, statistical analysis was limited to current and previous COCP users as the sample of participants who had never used the COCP was too small to allow reliable calculations.

Implication for clinical practice and future directions

A recent analysis of the Bettering the Evaluation and Care of Health (BEACH) data by Mazza et al. [1] found that COCP prescribing is a common focus of many GP consultations concerning contraceptive management. Our study also indicated that GPs are the main source of information regarding the COCP. Given that the COCP is a prescription medication, routine medical consultations are required and offer ample opportunity for medical practitioners to ensure appropriate use and knowledge of the COCP. This is especially so since a total of 54% of participants in our study indicated they have been or were using the pill for more than five years.  In their study assessing Australian women’s knowledge of the COCP, Philipson, Wakefield, and Kasparian [11] found a positive correlation between duration of pill usage and level of knowledge.

Although our study suggested that GPs are the main source of information regarding the COCP, there were many other information sources identified and so we cannot assume the subsequent level of knowledge of the surveyed participants is the result of GP intervention alone. Therefore, other healthcare professionals that may provide COCP counselling have a role in helping to improve women’s knowledge of the COCP. Given that the Internet, friends, and family members were also important information sources for women regarding the COCP, awareness and appropriate counselling is also necessary to identify and address any misinformation that women may have obtained from these sources.

This study provides a unique perspective in that it assesses rural Australian women’s knowledge of the COCP. The aforementioned study by Philipson, Wakefield, and Kasparian [11], whose data collection was generated randomly from each state, was the only other Australian study identified after examination of the literature. As our study was limited to a rural general practice setting, future research may wish to expand on this data by investigating other rural practices or compare results to metropolitan practices.

Rural Australians experience poorer health outcomes compared to their metropolitan counterparts [29,30]. Health literacy is likely a contributing factor to such outcomes [30]. An analysis of the Adult Literacy and Life Skills Survey data from 2006 by the Australian Bureau of Statistics shows that health literacy levels are low across the board – 42% of Australian urban populations were shown to have a literacy level of 3 (considered an adequate level) or greater; 38% and 39% of inner regional and remote populations, respectively also demonstrated a literacy level of 3 or greater. The outer regional populations possessed the lowest levels of people demonstrating a literacy level of 3 or greater at 36% [31]. In the context of the clinical environment, there is a paucity of literature available, but one recent study by Wong et al. [32] comparing health literacy of patients attending both a rural and an urban rheumatology practice found no significant difference between these groups. Despite research showing differences in health outcomes between rural and metropolitan populations of Australia [29,30], studies comparing the knowledge and health literacy of rural and metropolitan patients, particularly in relation to medications, proved difficult to find so we cannot extrapolate the findings of the current study to comment on whether a general knowledge deficit exists.

Since this study was designed only to assess women’s level of knowledge about the COCP, and not factors associated with level of knowledge, further studies regarding what factors influence knowledge are also important. These may include factors relating to the primary care setting, such as: impact of consultation timing; exploring the discussions and resources used during COCP consultations and whether counselling deficiencies exist; assessing what information healthcare professionals deem clinically relevant or applicable on an individual patient basis, and whether this impacts upon what information is provided to patients and therefore what knowledge base they retain. Additional studies may wish to investigate the effectiveness of the product information sheet for the COCP, or whether women believe COCP information is easily accessible and where this can be obtained (for example, what limits women’s access to information from pharmacies or community health clinics). Future studies may also wish to explore whether rural specific issues (for example, more limited access to healthcare providers) play a role.

Furthermore, additional studies that evaluate practical strategies for improving knowledge and information retention should also be undertaken. In the systematic review by Hall et al. [19] only four studies assessed interventions and their impact on contraceptive pill knowledge. Three of the four studies noted improved knowledge in at least one domain, highlighting that an array of additional educational materials may be beneficial in improving counselling sessions [19].

As more Australian-specific data accumulates about women’s knowledge of the COCP, better public health initiatives and education strategies can be implemented to improve outcomes. The results of this study may encourage healthcare professionals to better understand and review areas of their own counselling sessions. Improvements may be achieved through better addressing how to use the COCP, what will affect its contraceptive benefit, and common misconceptions. Additionally, healthcare professionals can be assured they have provided appropriate informed consent by discussing risks, benefits, and alternative options [33]. In the long term, this may eventually lead to improvements in the typical failure rate of the COCP and reduce the rate of unintended pregnancies.

Conclusion

The women surveyed in this study appear to have substantial gaps in their knowledge of the COCP despite a high prevalence and duration of usage. Although many other sources were also utilised for information on the COCP, GPs were the main source of information. As such, this study provides insight into specific knowledge areas that require further education and clarification during COCP counselling sessions to encourage improved knowledge of the COCP by women, particularly those in the rural Australian general practice setting.

Acknowledgements

The authors would like to thank the staff at the medical centre where this research was conducted for their support in facilitating this project.

Conflicts of interest

None declared.

References

[1] Mazza D, Harrison C, Taft A, Brijnath B, Britt H, Hussainy S, et al. Current contraceptive management in Australian general practice: an analysis of BEACH data. Med J Aust. 2012;197(2):110-4.

[2] Dragoman M. The combined oral contraceptive pill – recent developments, risks and benefits. Best Pract Res Clin Obstet Gynaecol. 2014;28(6):825-34.

[3] D’Souza R, Guillebaud J. Risks and benefits of oral contraceptive pills. Best Pract Res Clin Obstet Gynaecol. 2002;16(2):133-54.

[4] Schindler A. Non-contraceptive benefits of oral hormonal contraceptives. Int J Endocrinol Metab. 2013;11(1):41-7.

[5] Collaborative group on epidemiological studies on endometrial cancer. Endometrial cancer and oral contraceptives: an individual participant meta-analysis of 276 women with endometrial cancer from 36 epidemiological studies. The Lancet Oncology. 2015; 16(9):1061-70.

[6] Havrilesky L, Moorman P, Lowery W, Gierisch J, Coeytaux R, Myers E, et al. Oral contraceptive pills as primary prevention for ovarian cancer. J. Obstet Gynecol. 2013;122(1):139-47.

[7] Vessey M, Yeates D. Oral contraceptives and benign breast disease: an update of findings in a large cohort study. Contraception. 2007; 76(6): 418-24.

[8] Harada T, Momoeda M, Taketani Y, Hoshiai H, Terakawa N. Low-dose oral contraceptive pill for dysmenorrhea associated with endometriosis: a placebo-controlled, double-blind, randomized trial. Fertility and Sterility. 2008;90(5)1583-8.

[9] Wong C, Farquhar C, Roberts H, Proctor M. Oral contraceptive pill for primary dysmenorrhoea. Cochrane Database Syst Rev. 2009.

[10] Arowojolu A, Gallo M, Lopez L, Grimes D. Combined oral contraceptive pills for treatment of acne. Cochrane Database Syst Rev. 2012.

[11] Philipson S, Wakefield C, Kasparian N. Women’s knowledge, beliefs, and information needs in relation to the risks and benefits associated with use of the oral contraceptive pill. Int. J. Wom. Health. 2011;20(4):635-42.

[12] de Bastos M, Stegeman B, Rosendaal F, Van Hylckama Vlieg A, Helmerhorst F, Stijnen T, et al. Combined oral contraceptives: venous thrombosis. Cochrane Database Syst Rev. 2014.

[13] Roach R, Helmerhorst F, Lijfering W, Stijnen T, Algra A, Dekkers O. Combined oral contraceptives: the risk of myocardial infarction and ischemic stroke. Cochrane Database Syst Rev. 2015.

[14] Royal College of Obstetricians and Gynaecologists (RCOG). Green-top guideline No.40: Venous thromboembolism and hormonal contraception [Internet]. RCOG; 2010 [cited 2015 March 24]. Available from: https://www.rcog.org.uk/en/guidelines-research-services/guidelines/gtg40/.

[15] Royal Australian and New Zealand College of Obstetricians and Gynaecologists (RANZCOG). College Statement C-Gyn 28: Combined hormonal contraceptives [Internet]. RANZCOG; 2012 [cited 2015 March 24]. Available from: https://www.ranzcog.edu.au/college-statements-guidelines.html#gynaecology.

[16] Cancer Council Australia. Position Statement: Combined oral contraceptives and cancer risk [Internet]. Cancer Council Australia; 2006 [cited 2015 Feb 7]. Available from: http://www.cancer.org.au/policy-and-advocacy/position-statements/oral-contraceptives.html.

[17] eTG Complete [Internet]. Melbourne (Vic): Therapeutic Guidelines Limited; 2015. Hormonal contraception: introduction; [cited 2015 March 24]. Available from: http://online.tg.org.au.ezproxy.uow.edu.au/ip/desktop/index.htm.

[18] Trussell J. Contraceptive failure in the United States. Contraception. 2011;83(5):397-404.

[19] Hall K, Castaño P, Stone P, Westhoff C. Measuring oral contraceptive knowledge: a review of research findings and limitations. Patient Educ Couns. 2010;81(3):388-94.

[20] Black K, Bateson D, Harvey C. Australian women need increased access to long-acting reversible contraception. Med J Aust. 2013;199(5):317-8.

[21] Bryden P, Fletcher P. Knowledge of the risks and benefits associated with oral contraception in a university-aged sample of users and non-users. Contraception. 2001;63(4):223-7.

[22] Davis T, Fredrickson D, Potter L, Brouillette R, Bocchini A, Parker R, et al. Patient understanding and use of oral contraceptive pills in a southern public health family planning clinic. South Med J. 2006;99(7):713-8.

[23] Rajasekar D, Bigrigg A. Pill knowledge amongst oral contraceptive users in family planning clinics in Scotland: facts, myths and fantasies. Eur J Contracept Reprod Health Care. 2000;5(1):85-90.

[24] Schrager S, Hoffmann S. Women’s knowledge of commonly used contraceptive methods. WMJ. 2008;107(7):327-30.

[25] Family Planning New South Wales, Family Planning Queensland, Family Planning Victoria. Contraception: an Australian clinical practice handbook. 3rd ed. Canberra: Family Planning New South Wales, Family Planning Queensland, Family Planning Victoria; 2012.

[26] Gallo M, Lopez L, Grimes D, Carayon F, Schulz K & Helmerhorst F. Combination contraceptives: effects on weight. Cochrane Database Syst Rev. 2014 Jan

[27] Fletcher P, Bryden P, Bonin E. Preliminary examination of oral contraceptive use among university-aged females. Contraception. 2001;63(4):229-233.

[28] Gaudet L, Kives S, Hahn P, Reid R. What women believe about oral contraceptives and the effect of counselling. Contraception. 2004;69(1):31-6.

[29] Australian Institute of Health and Welfare (AIHW). Rural, regional and remote health: Indicators of health status and determinants of health [Internet]. AIHW; 2008 [cited 2016 May 4]. Available from: http://www.aihw.gov.au/publication-detail/?id=6442468076.

[30] Australian Institute of Health and Welfare. Australia’s health 2014 [Internet]. AIHW; 2014 [cited 2016 May 4]. Available from: http://www.aihw.gov.au/WorkArea/DownloadAsset.aspx?id=60129548150.

[31] Australian Bureau of Statistics (ABS). Health literacy Australia 2006 [Internet]. ABS; 2008 [cited 2016 May 4]. Available from: http://www.abs.gov.au/ausstats/abs@.nsf/Latestproducts/4233.0Main%20Features22006?opendocument&tabname=Summary&prodno=4233.0&issue=2006&num=&view=.

[32] Wong P, Christie L, Johnston J, Bowling A, Freeman D, Bagga H, et al. How well do patients understand written instructions? Health literacy assessment in rural and urban rheumatology outpatients. Medicine. 2014;93(25):1-9.

[33] Vogt C, Schaefer M. Disparities in knowledge and interest about benefits and risks of combined oral contraceptives. Eur J Contracept Reprod Health Care. 2011;16(3);183-93.

Appendix

Download (DOCX, 26KB)

Categories
Letters

I am a medical student, and I am afraid to report bullying and harassment

The president of the Royal Australian College of Surgeons (RACS) has apologised on behalf of surgeons for discrimination, bullying, and sexual harassment [1]. The Australian Medical Association (AMA) has released a position statement on workplace bullying and harassment [2,3]. Despite this, Dr Caroline Tan still does not work in any major public hospitals and I, a final year medical student, am still afraid to report bullying and harassment.

“Suck Sarah*, suck” was what the consultant surgeon who was operating repeatedly instructed me to do with the suction device whilst I was assisting him as a medical student in theatre. After about the twentieth time he said this, the assisting registrar joked “I thought you’d be better at sucking than that Sarah”. Everyone in the theatre laughed aloud and despite feeling increasingly uncomfortable, I joined in. I was trying my best to please my superiors and laughing at their jokes was part of this attempt. It wasn’t until the casual discussion with my colleagues that evening that I realised how degrading and inappropriate these comments were. My uncomfortable feelings weren’t just part of being a medical student surrounded by intimidating seniors, but rather, were the result of sexual harassment. The very fact that I assumed what occurred was normal is testament to the fact that bullying and harassment is entrenched in the culture of medicine and its hierarchy. I never reported the incident, and none of my colleagues ever encouraged me to do so.

My story raises the issue of commonplace occurrences in medicine. Sydney surgeon, Dr Gabrielle McMullin, publically said Dr Caroline Tan’s career was ruined by a sexual harassment case that she won against her fellow neurosurgeon in 2008, and that she would have been better off giving him ‘a blow job’ [4]. Dr McMullin’s controversial comments attracted unprecedented media attention and were successful in exposing a silent epidemic of bullying and harassment in medicine.

Bullying is defined as repeated unreasonable behaviour that creates a risk to health and safety. Harassment is unwanted, unwelcome, or uninvited behaviour that makes a person feel humiliated, intimidated, or offended [5]. According to the AMA, medical students, doctors in training, female colleagues, and international medical graduates are the most common victims of bullying and harassment in the medical profession [2]. Up to 50% of doctors, doctors in training, and international medical graduates have been bullied or harassed, and the most common perpetrators are senior doctors [5-7]. This problem has persisted for many years because hospitals and professional associations have failed to act, discouraged change, and have thereby fostered a culture of bullying [8].

The sequelae of workplace bullying and harassment in medicine are serious. The continued erosion of confidence, skills, and initiative creates negative attitudes among medical staff. It directly leads to reduced employee physical and psychological health that manifests as anxiety and depression. This leads to diminishing performance, reduced quality of patient care, and subsequently deteriorating patient safety [9].

Most large medical organisations including the AMA and RACS have responded to the issue and identified bullying and harassment in medicine as a priority area for change. The AMA, on 9th March 2016, released ‘Setting the standard’, a strategy to overcome bullying, discrimination, and harassment in the medical profession [2]. The RACS Expert Advisory Group (EAG) has published its final report on the extent of discrimination, bullying, and sexual harassment in the practice of surgery [5]. However, despite these efforts and the extensive coverage in the media, bullying and harassment still occur and victims such as myself are still afraid to speak up. Barriers to victims making claims include the perception that nothing would change, not wanting to be seen as a trouble-maker, the seniority of the bully, fear of impact on future job prospects, and uncertainty over how cases would be managed and future policies implemented [5].

Efforts need to focus on ground-level interventions. Importantly, new policies from the AMA, RACS, and other leading organisations need to work towards creating safer and more effective complaints processes that people such as myself are more willing to use. A system that ensures we will not be punished as Dr Caroline Tan was. All members of the medical workforce need to normalise a zero-tolerance attitude to bullying and harassment so that it can be cultivated and adopted into the culture of medicine. Only then may the change be organic and not just another unread policy used by medical associations as medicolegal protection.

* A pseudonym has been used to protect the author’s privacy.

References

[1] RACS Media Release. RACS apologises for discrimination, bullying and sexual harassment. Canberra:RACS;2015 [cited 2016 Mar]. Available from: http://www.surgeons.org/news/racs-apologises/.

[2] Australian Medical Association. AMA position statement: workplace bullying and harassment. Canberra:AMA;2015. Available from: https://ama.com.au/position-statement/workplace-bullying-and-harassment.

[3] Australian Medical Association. Setting the standard, AMA Victoria’s summit. Canberra:AMA;2016 Mar. Available from: http://amavic.com.au/icms_docs/237873_Setting_the_Standardpdf

[4] Medew J. Surgeon Caroline Tan breaks silence over sexual harassment in hospitals. The Age [Internet]. 2015 Mar 12 [cited 2016 May]; Victoria. Available from: http://www.theage.com.au/victoria/surgeon-caroline-tan-breaks-silence-over-sexual-harassment-in-hospitals-20150312-141hfi.html.

[5] Expert Advisory Group. Survey of all college fellows, trainees and international medical graduates to find out the scope of discrimination, bullying and sexual harassment, 2015. Canberra:RACS;2015 Sep [cited 2016 Mar]. Available from: http://www.surgeons.org/media/22086656/EAG-Report-to-RACS-FINAL-28-September-2015-.pdf.

[6] Rutherford A, Rissel C. A survey of workplace bullying in a health sector organisation. Aust Health Rev. 2004;28(1):65-72.

[7] Fnais N et al. Harassment and discrimination in medical training: a systematic review and meta-analysis. Acad Med. 2014;89(5):817-27.

[8] Watters DA, Hillis DJ. Discrimination, bullying and sexual harassment: where next for medical leadership? Surgeon. 2015;2015(001).

[9] Rosenstein AH. The quality and economic impact of disruptive behaviors on clinical outcomes of patient care. Am J Med Qual. 2011;26(5):372-9.

Categories
Letters

On the importance of regular reporting from governmental public health bodies

Despite the increasing importance of transparency and accountability in government, and the demonstrated efficacy of consultation, communication, and response to criticism in policy development, the last decade has seen a backwards step in the effective output of Australia’s governmental public health bodies.

The National Public Health Partnership (NPHP), a federal government organisation formed in 1996, was, and continues to be, widely celebrated by public health practitioners for its enduring contributions to Australian public health. The NPHP published quarterly newsletters and produced close to 100 publicly accessible reports in their relatively short tenure [1,2] covering a very broad set of issues. In 2006, the NPHP was dissolved and replaced by two advisory committees: the Australian Health Protection Principal Committee and the Australian Public Health Development Principal Committee (APHDPC). The former group exists in order to formulate strategies for response to public health emergencies and other large-scale heath threats, while the APHDPC was intended to “coordinate a national effort towards an integrated health development strategy” [3]. To rename, rebrand, divide, and unite government entities is a common process undertaken for a variety of reasons. Indeed, the APHDPC appears to have since been divided into five separate principal committees, all advising the Australian Health Ministers’ Advisory Council (AHMAC) [4]. However, these newer committees do not publicly report on their work, which is problematic in a number of dimensions.

Most governmental organisations communicate their work as a matter of principle (even ASIO releases yearly reports [5], and secrecy is their business). Accountability of governmental institutions is becoming an ever-more important factor in modern societies [6], and it is imperative that the public have some sense of the function of government departments. This is important for ensuring that public expenditure is well-targeted and produces meaningful results. In an ideal system, underperforming government entities will be subject to public pressure calling for internal change to either increase the efficacy of the entity in question, or remove it entirely. This is one of the key arguments for the importance of governmental transparency [6].

More importantly, the infrequency and inconsistency of publicly available reports emerging from the new principal committees are counterproductive to their stated aims. It is clear that consultation with the public is crucial to maximising the efficacy of emerging public health practices and policies [7]. As the peak groups responsible for advising governments on health policy, their work should be open to criticism, and therefore improvement, through as many avenues as possible.

Stifling the process of wider input into policy development restricts scrutiny to after-the-fact analysis. Australia has clear mechanisms to evaluate the progress of certain health outcomes and effectiveness of new policies – the Australian Institute of Health and Welfare and the Bureau of Statistics are responsible for this – so why is it that the evaluation of developing policies is not as open? Delaying consultation with academics and calls for public submissions on proposed policies until the implementation stage is not ideal; as with public health issues themselves, suboptimal policy decisions are best addressed upstream. It is critical for academics, non-government organisations, and the general public to have access to plans for developing public health programs, reports on current strengths and weaknesses, and other procedural documents. Helpful scrutiny can arise from such publicity and accelerate Australia’s advances towards a healthier society.

After the immensely public legacy of the NPHP, the sudden absence of regular reporting in the sphere of public health policy development is somewhat disarming, but the reasons underlying this sudden disappearance are unclear. The central issue here appears to be primarily one of communication. A small suite of reports is available for download on the Council of Australian Governments (COAG) Health Council website, which represents the recent work of the principal committees which comprise the AHMAC [8]. These are, however, poorly advertised, difficult to find, and infrequently accessed. In short, a number of issues conspire to ensure that the work that does emerge from the COAG Health Council goes relatively unnoticed.

Consultation is a cornerstone of policy development in any sector, and all government bodies should seek to interact with the public in order to promote their work and receive feedback. Australians have a right to know what ideas our governmental public health groups are proposing and developing, and the optimisation and implementation of these ideas depends on communication with clinicians, public health practitioners, and the wider community. If the COAG Health Council and its subsidiaries more regularly presented work for public criticism, our formulation and implementation of federal public health initiatives would inarguably be more successful. A strong collective public health partnership is vital for the effective dissemination of information, as well as discussion and improvement of developing public policy. The current widespread radio silence from our peak intergovernmental public health bodies is damaging to the future of Australian health, and these organisations should be expected to more frequently demonstrate interest in communicating with the community through both consultation and the release of public reports.

Acknowledgements
None.

Conflicts of Interest
None declared.

References

[1] Victoria Health. NPHP News Archive [Internet]. Melbourne, Victoria: Victoria health; 2003 [updated 2005 July 1; cited 2016 March 4]. Available from: http://www.health.vic.gov.au/archive/archive2014/nphp/nphp_news/archive.htm.

[2] Victoria Health. NPHP Publications [Internet]. Melbourne, Victoria: Victoria health; 2003 [updated 2006 July 24; cited 2016 March 4]. Available from: http://www.health.vic.gov.au/archive/archive2014/nphp/publications/wa_index.htm.

[3] Victoria Health. The National Public Health Partnership (NPHP) [Internet]. Melbourne, Victoria: Victoria Health; 2006 [updated 2010 February 22; cited 2016 March 4]. Available from: http://www.health.vic.gov.au/archive/archive2014/nphp/.

[4] COAG Health Council. Principal Committees [Internet]. Adelaide, South Australia: COAG Health Council; 2014 [cited 2016 April 13]. Available from: http://www.coaghealthcouncil.gov.au/AHMAC/Principal-Committees.

[5] Australian Security Intelligence Organisation. ASIO Report to Parliament 2014-15 [Internet]. Canberra ACT: Australian Security Intelligence Organisation; 2015 [cited 2016 March 4]. Available from: http://www.asio.gov.au/Publications/Report-to-Parliament/Report-to-Parliament.html.

[6] Bertot JC, Jaeger PT, Grimes JM. Promoting transparency and accountability through ICTs, social media, and collaborative e-government. Transforming Government: People, Process and Policy. 2012 Mar 16;6(1):78-91.

[7] Organisation for Economic Co-operation and Development (OECD). Citizens as Partners: OECD Handbook on Information, Consultation and Public Participation in Policy-Making. Paris: OECD; 2001.

[8] COAG Health Council. Reports [Internet]. Adelaide, South Australia: COAG Health Council; 2014 [cited 2016 April 13]. Available from: http://www.coaghealthcouncil.gov.au/Publications/Reports/PgrID/514.

Categories
Editorials

The future of Australian medical research

Welcome to Volume 7, Issue 2 of the Australian Medical Student Journal (AMSJ). Here, we have the privilege of publishing the best research, opinions, reviews, and insights from medical students and junior doctors around Australia.

We feature outstanding guest articles from influential leaders across the medical landscape. Dr Alan Finkel AO, Australia’s Chief Scientist, looks optimistically ahead with an incisive commentary about the future landscape of medical research. With the rise of artificial intelligence and robots with far superior decision-making power in patient care, research skills will become increasingly valuable as a clinician, and will help us happily and healthily live to 100 years of age.

Dr Chris Nickson of lifeinthefastlane.com, SMACC, and FoamEd fame provides you with the essential skills to maximise the ever-developing resource of Free Open Access Meducation – a must read to increase the efficiency and effectiveness of your learning and engagement.

Prof. Kingsley Faulkner AM, Chairman of Doctors for the Environment Australia (DEA), writes on climate change, health, and our responsibility to act. Forget whatever government might threaten Medicare – climate change is the greatest crisis for human health and we need to find a voice and translate this into action.

Once again, we have received topical and original articles of excellent standard over a range of topics. Dr Sharna Kulhavy, in her original research article, highlights the deficiencies in knowledge in women taking the oral contraceptive pill in a rural setting. This adds to previously published work by this journal in the area of health literacy and its impact on patient care. Obert Xu reviews the efficacy of, and issues, surrounding the impending implementation of pre-exposure prophylaxis (PrEP) in the Australian setting. Considering the potential effectiveness of PrEP as a public health strategy in combatting HIV infection, this is something all future practitioners should be aware of. In a succinct review, Ronny Schneider evaluates the current and emerging evidence for persistent occiput posterior in labour.

Finally, our feature articles and letters highlight a range of current issues, for example, refugee health, and the health profession’s use of language with patients. It is with exception we publish a letter anonymously, on a student’s experience of harassment in medicine. It is vital to share these stories to confront this scourge that discourages, discriminates against and disillusions our best and brightest.  It is an indictment of our culture that the author feels the need to write incognito for fear of the personal impact of speaking out, however I commend her courage to write at all.

The AMSJ is a national publication staffed by committed volunteers from medical schools throughout the country. Each issue requires many hours of work from editors, proof readers, and publications and IT teams. All this is not possible without the work of a great team of university representatives, publicity, and sponsorship and finance teams, all lead by our capable executive. My thanks to each and every person listed in this journal that has given their time to promote student research and national collaboration.

We thoroughly enjoy working with our authors and peer reviewers – thank you all for your submissions and feedback. Funding for medical research continues to be difficult throughout Australia, but there are exciting times ahead. I would like to thank our readers and sponsors for their ongoing support to provide the environment to encourage and develop the budding leaders in medicine and research with the commitment to submit to this publication. On behalf of the AMSJ, I hope you enjoy this issue.

Categories
Case Reports

An unusual aetiology in a patient with increasing abdominal girth

Pseudomyxoma peritonei (PMP) is a rare, slow growing mucinous ascites, typically associated with primary appendiceal or ovarian neoplasm [1]. Mucinous material fills the peritoneal cavity, causing enlargement of the abdomen and has been described as “jelly belly”, due to its appearance at laparotomy [2]. The symptoms of PMP are often non-specific and vague, causing difficulties in diagnosis. Further, diagnostic imaging is not always able to detect the disease prior to surgery. The clinical implications of this are that PMP is not commonly considered a differential diagnosis in patients with these symptoms, which may then delay the diagnosis being made. This causes a potential delay in treatment, which has been shown to worsen the morbidity and mortality associated with PMP [3,4].

Introduction

Pseudomyxoma peritonei (PMP) is a rare, slow growing mucinous ascites, typically associated with primary appendiceal or ovarian neoplasm [1]. Mucinous material fills the peritoneal cavity, causing enlargement of the abdomen and has been described as “jelly belly”, due to its appearance at laparotomy [2]. The symptoms of PMP are often non-specific and vague, causing difficulties in diagnosis. Further, diagnostic imaging is not always able to detect the disease prior to surgery. The clinical implications of this are that PMP is not commonly considered a differential diagnosis in patients with these symptoms, which may then delay the diagnosis being made. This causes a potential delay in treatment, which has been shown to worsen the morbidity and mortality associated with PMP [3,4].

Case

A 48-year-old female presented to her general practitioner with a two-month history of increasing abdominal girth and a feeling of pelvic “fullness”. Importantly, she had not been unwell, did not have any infective symptoms, no loss of weight or appetite, and no nausea or vomiting. Her bladder and bowel function was normal, her periods were regular, and her Pap smears were up to date and normal.

The patient had a past medical history of primary hypothyroidism and depression, both of which were clinically stable. She had no known allergies. Her regular medications were Fluoxetine (20 mg daily) and thyroxine sodium (100 mg daily). She lived with her 16-year-old daughter, and worked full time in a delicatessen. Her family history included bowel, prostate, and breast cancer.

Her GP ordered various investigations (Table 1). Her borderline high CA-125 level (38 kU/L, reference range < 36 kU/L) and the imaging findings suggested a possible gynaecological malignancy.

Table 1: Initial investigation results

Full blood examination Normal
UEC Normal
Ca125^ 38 (RR* < 36 kU/L)
CEA^ 7.2 (RR* < 2.5 mg/L in non-smokers)
Ca19.9^ 12 (RR* < 31 kU/L)
Trans-abdominal ultrasound
  • Normal-sized, anteverted uterus.
  • Right adnexa: large complex-appearing mass lesion associated with ascites. Right ovary not able to be visualised.
  • Left adnexa: left ovary slightly bulky but unremarkable.
CT chest/ abdomen/ pelvis Relevant features:

  • Multiloculated cystic lesion noted within the right side of the pelvis that measures 9 cm in maximum diameter.
  • Thin septa with associated calcifications are noted.
  • Ascites is present in the peritoneal cavity and there is streaking of the omentum. Some of this streaking is suspicious for omental seeding.
  • There is no retroperitoneal lymphadenopathy seen

Conclusion: right-sided pelvic lesion consistent with ovarian mucinous cystadenomatous-type lesion. The presence of ascites and possible omental caking suggests adenocarcinoma.

  • *RR: reference range
  • ^Ca125: cancer antigen 125, CEA: carcinoembryonic antigen, Ca19.9: cancer antigen 19.9. These are common tumour markers used in conjunction with clinical examination and other investigations to aid cancer diagnosis.

She was referred to an outpatient gynaecological oncology clinic for further evaluation and formulation of a management plan. On examination in the clinic, the patient looked well and was afebrile. Her abdomen was distended, with a palpable, non-tender mass in the right iliac fossa. Mild ascites was present. She was also obese (BMI 37). Per vaginal examination revealed a palpable mass, with noted fixation of the right adnexa. Her uterus was mobile, non-tender, and of normal size and morphology.

The patient was discussed at the multidisciplinary team meeting where it was recommended that she undergo a laparotomy for total abdominal hysterectomy, bilateral salpingo-oophrectomy, and omentectomy. At the time of the surgery, she was noted to have extensive mucinous material throughout her peritoneum, and within her uterus and cervix. The mass seen on imaging was found to be an enlarged appendix, which required concurrent general surgical consultation for removal. The specimens were sent to pathology for analysis (Table 2).

Table 2: Formal pathology results

Cytology
  • Smears are mildly cellular, with abundant thick mucin, in keeping with peritoneal mucinosis or pseudomyxoma peritonei.
  • No overt malignant cells identified.
Histopathology Macroscopic
  • Uterus, tubes and ovaries: serosal surface of the uterus appears haemorrhagic, with multiple mucin-containing cystic lesions. No mass lesion is identified. The left ovary is haemorrhagic with a disrupted cyst present. The right ovary is partially covered in mucinous material and cysts. Unremarkable myometrium.
  • Appendix: large specimen (9 cm x 6 cm x 5 cm) that is disrupted, cystically-dilated and containing mucin. The surface is congested, with mucin extravasation present.
Microscopic
  • Uterus, tubes and ovaries: all sections of the serosa have organising mucinous exudate present. No tumour cells are seen in the serosal mucous. No neoplasia is seen in either ovary.
  • Appendix: dilatation of the proximal lumen, with marked fibrosis and patchy calcifications. Distally the lumen is distended by mucin, with tall columnar epithelium showing basophilic hyperchromatic nuclei and suprabasaloid mucin production. Some of these atypical cells are spread over the surface of the luminal mucus. The mucin has dissected through the appendix muscularis to rupture into the peritoneal cavity.

The subsequent histopathological diagnosis was of a primary appendiceal malignancy, with rupture and extensive mucin extrusion into the peritoneal cavity.

She had an unremarkable post-operative course, and was discharged home on day 4. She was to be followed up with the pathology results for relevant discussion regarding her ongoing treatment, management, and prognosis.

Discussion

Pathology

The underlying pathology in PMP has been a controversial area for some time [6]. The pathological process was originally thought to be due to a foreign body reaction after mucus containing cysts ruptured into the peritoneum [7]. However, it has now been re-defined to embrace a spectrum of cells from benign to malignant that produce abundant mucinous fluid. Within the ascitic fluid, there may be a few, if any, neoplastic cells seen, as the mucinous exudate is believed to spread further than any potential malignant cells within the peritoneum [8]. Malignant cells that produce PMP are often described as histologically borderline, as they do not show invasion of surrounding structures since they adhere rather than invade. Haematogenous or lymphatic metastasis is unusual, and most cases are found to originate from the appendix, with the most common being primary appendiceal mucinous neoplasia [6]. Rarely, however, the origin may be from the ovary, stomach, gallbladder, pancreas, urinary bladder, uterus, or fallopian tubes [1]. The mucinous tumour cells form cysts that increase intraluminal pressure within the organ of origin, and eventually cause the luminal wall to rupture [8]. The cells are then able to leak into the peritoneum. They are transported passively by peritoneal fluid flow and absorption, and by gravity to adhere to both abdominal and pelvic structures. Even if PMP is of a benign cell origin, the slow but relentless increase of gelatinous fluid in the peritoneal cavity causes compression of intra-abdominal organs, and mechanical and functional gastrointestinal obstruction [8].

Clinical presentation

Symptoms of PMP vary and will depend on the extent of the disease. Most commonly, patients report increasing abdominal girth or enlarging incisional, umbilical, or inguinal hernias [2]. Women may be diagnosed incidentally during routine pelvic examination or may present with infertility [2]. Patients may also report early satiety, as the space within the peritoneal cavity for the stomach to expand decreases, or with a clinical picture of acute appendicitis [9]. However, PMP is still often diagnosed incidentally at laparotomy, with symptoms sometimes inaccurately labeled as irritable bowel syndrome for years prior to diagnosis [1,2].

Utility of diagnostic imaging in PMP

Multiple imaging modalities have been reviewed with regard to PMP. Plain abdominal x-rays have been found to be of little diagnostic use, however, it may help to diagnose intestinal obstruction, a late complication of PMP [10]. Ultrasound may be utilised, with reported findings including homogenous tumour deposits, separated ascites, scalloping of the liver edges, and echogenic masses [11]. CT scans are the most widely used imaging technique for intra-abdominal pathology. Findings suggestive of PMP include scalloping of organs, ascitic septations and loculi, curvilinear calcifications, and omental thickening [10].

A review of CT scan use in 17 cases of PMP reported that early disease is easier to diagnose than more advanced disease. The authors urged radiologists to look for a pattern of mucinous ascites accumulation, rather than the appearance of individual deposits of disease on the image [12]. These authors were based at a surgical hospital and had experience with PMP. It may be difficult to expect a radiologist to detect this diagnosis without having had a similar level of experience. Ultrasound requires similar expertise, where it has been reported that familiarity with the features of PMP are required for accurate diagnosis [13].

Clinical implications

Despite being uncommon, PMP is a possible diagnosis that may occur in patients. It is worth keeping this disease as a differential diagnosis for patients that present with abdominal fullness. Imaging may help with the diagnosis but is not definitive. Without treatment, the prognosis for this condition is poor, with a ten-year survival rate of approximately 32% [14]. Treatments such as peritonectomy, intra-peritoneal chemotherapy at the time of surgery, and radical de-bulking of tumour deposits have been shown to improve the recurrence free survival time in these patients and decrease overall mortality [3,4]. Further, surgery that does not definitively de-bulk the condition contributes to increased difficulty in managing PMP effectively later on, through the creation of adhesions that can facilitate spread of PMP to the small bowel [3]. Early diagnosis is therefore important to help expedite care, allow for appropriate surgical and oncology management to occur, and improve outcomes in patients with PMP.

This case highlights that although it is most commonly horses when you hear hooves, very occasionally, it may actually be a zebra.

Consent declaration

Informed consent was obtained from the patient for publication of this case report.

Conflicts of interest

None declared.

References

[1] Sherer DM, Abulafia O, Eliakim R. Pseudomyxoma Peritonei: a review of current literature. Gynecol Obstet Invest. 2001;51:73-80.

[2] Brueggan C, Baird G, Meisheid A. Pseudomyxoma peritonei syndrome of appendiceal origin: an overview. Clin J Onc Nursing. 2007;11(4):525-532.

[3] Sugarbaker PH. New standard of care for appendiceal epithelial neoplasms and pseudomyxoma peritonei syndrome. Lancet Oncol. 2006;7(1):69-76.

[4] Yan TD, Black D, Savady R, Sugarbaker PH. Systematic review on the efficacy of cytoreductive surgery and perioperative intraperitoneal chemotherapy for pseudomyxome peritonei. Ann Surg Oncol. 2007;14(2):484-492.

[5] Mann WJ, Wagner J, Cumas J, Chalas E. The management of pseudomyxoma peritonei. Cancer. 1990;66:1636-40.

[6] Carr NJ, Finch J, Ilesley IC, Chandrakumaran K, Mohamed F, Mirnezami A, et al. Pathology and prognosis in pseudomyxoma peritonei: a review of 274 cases. J Clin Pathol. 2012;65:919-923.

[7] Jivan S, Bahal V. Pseudomyxoma peritonei. Postgrad Med J. 2002;78:170-2.

[8] Agrawal AK, Bobiński P, Grzebieniak Z, Rudnicki J, Marek G, Kobielak P, et al. Pseudomyxoma peritonei originating from the urachus – case report and review of the literature. Curr Oncol. 2015 Feb;21(1):e155-165.

[9] Esquivel J, Sugarbaker PH. Clinical presentation of the pseudomyxoma peritonei syndrome. Br J Surg. 2000; 87:1414-18.

[10] Walensky RP, Venbrux AC. Prescott CA, Osterman FA Jr. Pseudomyxoma peritonei. Am J Roentgenol. 1996;167:471-4.

[11] Seshul MB, Coulam CM. Pseudomyxoma peritonei: computed tomography and sonography. Am J Roentgenol. 1981;136:803-6.

[12] Sulkin TV, O’Neill H, Amin AI, Moran B. CT in pseudomyxoma peritonei: a review of 17 cases. Clin Radiol. 2002;57:608-613.

[13] Li Y, Guo A, Tang J, Wang L, Wang J, Yu D. Role of preoperative sonography in the diagnosis and pathologic staging of pseudomyxoma peritonei. J Ultrasound Med. 2013;32(9):1565-1570.

[14] Gough DB, Donohue JH, Schutt AJ, Gonchoroff N, Goellner JR, Wilson TO, et al. Pseudomyxoma peritonei: long term patient survival with an aggressive regional approach. Ann Surg. 1994;219(2):112-119.

Categories
Case Reports

Focal segmental glomerulosclerosis: Treatment beyond corticosteroids

This case report describes a fourteen year-old male who presented with a relapse of steroid-dependent focal segmental glomerulosclerosis (FSGS). FSGS is responsible for 10-15% of cases of idiopathic nephrotic syndrome (INS) in children, with the majority of cases attributed to minimal change disease. Prednisolone is first line for the induction of remission, with the majority of INS cases responding to initial therapy. Those who fail to achieve remission within four weeks of corticosteroid therapy are labeled “steroid-resistant”. Of those who do remit with corticosteroids, 80% have a relapse, with 50% of these patients having “frequently relapsing disease”. Those patients who relapse while on corticosteroids, or within two weeks of cessation of corticosteroids, are labeled “steroid-dependent”. The aim of this article is to review the literature available on the management of FSGS, particularly steroid-resistant, steroid-dependent, and frequently relapsing disease.

Case Study

ML, a fourteen year-old male, presented to a rural paediatric department with a one-month history of increasing oedema of his face, sacrum, and lower limbs; lethargy; and oliguria on a background of known steroid-dependent focal segmental glomerulosclerosis (FSGS).

ML first presented with nephrotic syndrome in late 2014, which was initially responsive to corticosteroids, but relapsed following steroid cessation. A renal biopsy was performed in early 2015 and ML was diagnosed with FSGS. At this time, he was started on cyclosporin 125 mg OD and was managed by a general paediatrician and nephrologist.

Approximately one month prior to his admission, ML commenced 50 mg doxycycline at night for acne and the cyclosporin was consequently reduced to 100 mg daily due to concerns that doxycycline may increase the cyclosporin concentration. Soon after, his symptoms of nephrotic syndrome began to return and the cyclosporin was increased to 110 mg daily. ML had also started ramipril 1.25 mg at night prior to his admission.

ML had a history of partial seizures, diagnosed in 2008, which were well controlled by valproate 400 mg twice daily. Developmental history was unremarkable. He had no known allergies and had received his routine childhood vaccinations. Due to the immunosuppressive nature of relapsing nephrotic syndrome, he also received the pneumococcal vaccine and an annual influenza vaccine. There was a family history of epilepsy in his grandmother, but no family history of renal disease. ML was an only child, a non-smoker, and a non-drinker, who lived with his mother in a major regional centre.

On examination, ML was pale and lethargic, with marked periorbital oedema. His vital signs were within normal limits. He had cold peripheries, indicating intravascular depletion but central capillary refill was normal. His jugular venous pressure (JVP) was not elevated, but he had pitting oedema extending to the upper legs, as well as sacral, periorbital, and scalp oedema. His abdomen was distended and ascites was demonstrated by shifting dullness. The abdomen was otherwise non-tender and bowel sounds were present. Heart sounds were dual with no murmurs. His chest was clear with resonant percussion, excluding pulmonary oedema.

Investigations included urine dipstick; urine microscopy, culture, and sensitivity (MCS); spot protein-creatinine ratio; full blood examination (FBE); urea, electrolytes, and creatinine (UEC); liver function tests (LFTs); and a cyclosporin level. Urinary investigations revealed heavy proteinuria, but no haematuria, and all other investigations were unremarkable.

ML was admitted for management of his acute relapse, which included fluid and salt restriction, daily weighs, and daily urine dipstick. The ramipril was ceased. He was administered 75 mg of intravenous 20% albumin over six hours, with 40 mg of intravenous frusemide given at mid-infusion and post-infusion.

ML lost four kilograms overnight and was discharged on a five-day course of oral frusemide, with a 40 mg dose on the first day, then 20 mg for four days.

Discussion

Background

FSGS is a histopathological pattern of glomerular injury seen under light microscopy, in which sclerosis occurs in segments of only some of the glomeruli [1]. This pattern of injury can occur in all age groups and is the most common cause of adult nephrotic syndrome [2]. FSGS is also identified in 10-15% of cases of idiopathic nephrotic syndrome in children, with the majority of cases attributed to minimal change disease [3].

In most cases of FSGS, the underlying cause is unknown – termed “primary FSGS” [4]. However, secondary FSGS may develop as a response to previous renal injury. Underlying causes of secondary FSGS include reflux nephropathy, infections (for example, HIV), obesity, medications (for example, interferon), genetic mutations, surgical resection of renal tumours, congenital renal dysplasia, and intrauterine growth restriction [5].

Primary FSGS presents with a typical nephrotic syndrome, including foamy urine and extensive oedema [6], particularly periorbital oedema. Nephrotic syndrome is confirmed with a spot urine protein creatinine ratio >0.2 g/mmol [3]. Secondary FSGS is more variable in its presentation, with proteinuria often below nephrotic levels and patients being less likely to present with overt oedema [5].

In children who present with overt nephrotic syndrome, a renal biopsy is not appropriate, because the majority of these cases will be due to minimal change disease. Only when they are unresponsive to corticosteroids, or develop a frequently relapsing or steroid-dependent pattern of disease, is a renal biopsy justified [6]. For indistinct presentations (for example, proteinuria below nephrotic levels), a renal biopsy may be considered on the initial presentation [7]. The risks and benefits of the renal biopsy must be evaluated, with post-biopsy bleeding being a major risk to consider [6].

The following discussion will focus on the treatment of primary FSGS. Secondary FSGS is best treated with angiotensin converting enzyme (ACE) inhibitors or angiotensin receptor blockers to lower the intraglomerular pressure and treatment of the underlying cause, when possible [2].

Immunosuppressive treatment: corticosteroid

Corticosteroids are first-line in treatment of idiopathic nephrotic syndrome (INS) for the induction of remission. Between 80-90% of cases of INS are responsive to initial corticosteroid therapy [3]. Those patients who fail to achieve remission within four weeks of corticosteroid therapy are labeled “steroid-resistant”. Of those patients who respond initially, there is an 80% chance of relapse, with 50% of those having frequently relapsing disease, defined as two or more relapses in the first six months or four or more relapses in any twelve-month period [3,8]. Those who relapse while on corticosteroids or within two weeks of cessation of corticosteroids are labeled “steroid-dependent” [3].

Immunosuppressive treatment: non-corticosteroid

In steroid-resistant, steroid-dependent, and frequently relapsing disease, non-corticosteroid immunosuppressive agents are utilised. The available evidence for each of the commonly used non-corticosteroid immunosuppressive agents will be explored to determine if cyclosporin is the best treatment to prevent relapse in a patient like ML, who has steroid-dependent FSGS.

Calcineurin inhibitors, with or without low dose prednisolone, are first line [1]. The majority of evidence is with cyclosporin. Cochrane Reviews have demonstrated that cyclosporin increases the rate of remission in children with steroid-resistant disease [9] and reduces relapses in steroid-dependent disease, compared with prednisolone alone [8]. Cyclosporin was superior to intravenous cyclophosphamide in steroid-resistant disease [9]. However, in steroid-dependent disease, relapse was reduced with an eight-week course of alkylating agents, cyclophosphamide, or chlorambucil, while cyclosporin required a prolonged course and its effects were not always sustained following treatment cessation [8]. Therefore, cyclophosphamide plays no role in steroid-resistant disease, but may be used in the treatment of steroid-dependent FSGS when cyclosporin has failed or in patients with higher risk of calcineurin nephrotoxicity due to extensive interstitial fibrosis or vascular disease [1].

Mycophenolate motefil may be useful as an alternative medication for relapsing disease, however, the evidence is limited to a few smaller trials [8]. It may be used in combination with corticosteroids when calcineurin inhibitors have been unsuccessful or are contraindicated. Rituximab is another alternative, which has had some success in steroid-dependent disease, but the evidence does not support its use in steroid-resistant disease [8,10,11]. Subcutaneous natural adrenocorticotropic hormone (ACTH) therapy has also had some success in pilot studies, however, the treatment is expensive and further randomised trials are required to confirm the results [12,13].

Non-immunosuppresive treatment

The evidence clearly supports the use of ACE inhibitors or angiotensin receptor blockers in children with steroid-resistant nephrotic syndrome and secondary FSGS [7]. The use of these agents in steroid-dependent or frequently relapsing disease has not been specifically studied. However, guidelines on the use of anti-hypertensive agents in children with chronic kidney disease from any cause suggest that children should be started on an ACE inhibitor or angiotensin receptor blocker when their blood pressure is consistently above the 90th percentile for their age, sex, and height [14]. Treatment should aim to reduce blood pressure to at or below the 50th percentile, unless limited by symptomatic hypotension [14]. Blood pressure-lowering drugs should be used when indicated, irrespective of the level of proteinuria [14]. In primary FSGS, blood pressure-lowering therapy may slow progression to end-stage renal disease, however, it rarely results in remission without concurrent immunosuppressive treatment [15].

Hyperlipidaemia is a common complication of nephrotic syndrome. Combined with the higher cardiovascular risk of patients with chronic kidney disease, this calls for lipid-lowering therapy with a statin [1,16]. While lipid-lowering agents have been successful in lowering lipids in adults with nephrotic syndrome, no studies have looked at the mortality and morbidity benefits of a statin [16]. The use of statins in children with nephrotic syndrome is controversial, with small studies showing that statins reduce lipid levels and are well tolerated, however, there is a lack of evidence regarding long-term safety of statins in paediatric patients [17].

Renal transplantation

Over ten years, 60% of cases of FSGS progress to end-stage renal failure [18]. These patients will need dialysis or renal transplantation. However, there is a high rate of graft failure, with recurrence of FSGS in 30% of allografts [19,20]. The graft survival is lower in children than in adults [19].

Therapeutic plasmapheresis, used for a number of antibody-mediated conditions, is a process that removes the antibody-containing plasma from the patient’s blood and replaces it with unaffected plasma or a plasma substitute [21]. Therapeutic plasmapheresis may be used in FSGS prophylactically before transplantation or in the treatment of established recurrence in an allograft [19]. Studies show that 49-70% of children with recurrent FSGS who receive plasmapheresis enter complete or partial remission of proteinuria [19]. A small study demonstrated that early and intensive daily plasmapheresis in patients with recurrence was beneficial in obtaining complete remission [20].

Future novel therapies

Adalimumab and galactose versus conservative therapy with lisinopril, losartan, and atorvastatin is currently being studied in the “Novel therapies for resistant focal segmental glomerulosclerosis (FONT)” trial. [22] If successful, these treatments may form part of the treatment of FSGS in those patients who have failed other immunosuppressive therapies.

Conclusion

This case report describes a patient with steroid-dependent nephrotic syndrome, diagnosed on renal biopsy as FSGS. The patient was commenced on cyclosporin, which is first-line in steroid-dependent disease. Alternative immunosuppressive agents, rituximab and mycophenolate motefil, require larger-scale trials to confirm their efficacy. Current guidelines suggest that patients’ ramipril should be restarted if their blood pressure is above the 90th percentile for their age, sex and height. However, further research is needed to create specific guidelines for the use of anti-hypertensive agents in children with steroid-dependent nephrotic syndrome. The evidence for the safety of statins in children is insufficient, therefore these drugs should be avoided.

References

[1] Cattran DC, Appel GB. Treatment of primary focal segmental glomerulosclerosis [Internet]. Waltham (MA): UpToDate; 2016 [updated 2015 Feb 25; cited 2016 Mar 19]. Available from: http://www.uptodate.com/contents/treatment-of-primary-focal-segmental-glomerulosclerosis?source=machineLearning&search=focal+segmental+glomerulosclerosis&selectedTitle=2~110&sectionRank=1&anchor=H9#H9

[2] Reiser J. Epidemiology, classification, and pathogenesis of focal segmental glomerulosclerosis [Internet]. Waltham (MA): UpToDate; 2016 [updated 2015 Dec 4; cited 2016 Jun 12]. Available from: http://www.uptodate.com/contents/epidemiology-classification-and-pathogenesis-of-focal-segmental-glomerulosclerosis?source=search_result&search=Epidemiology%2C+classification%2C+and+pathogenesis+of+focal+segmental+glomerulosclerosis&selectedTitle=1~134

[3] Royal Children’s Hospital Melbourne. Nephrotic syndrome [Internet]. Melbourne: Royal Children’s Hospital Melbourne; 2016 [cited 2016 Mar 19]. Available from: http://www.rch.org.au/clinicalguide/guideline_index/Nephrotic_Syndrome/

[4] Goddard J, Turner AN. Kidney and urinary tract disease. In: Walker BR, Colledge NR, Ralston SH, Penman ID, editors. Davidson’s principles and practice of medicine. 22nd ed. Edinburgh: Elsevier Limited; 2014. p.461-523

[5] Kiffel J, Rahimzada Y, Trachtman H. Focal segmental glomerulosclerosis and chronic kidney disease in paediatric patients. Adv Chronic Kidney Dis [Internet]. 2013 [cited 2016 Jun 12];18(5):332-8. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709971/

[6] BMJ Best Practice. Assessment of nephrotic syndrome [Internet]. London: BMJ Publishing Group Limited; 2015 [cited 2016 Jun 12]. Available from: http://bestpractice.bmj.com/best-practice/monograph/356.html

[7] Kidney Disease Improving Global Outcomes (KDIGO). KDIGO clinical practice guideline for glomerulonephritis. Kidney Int Suppl [Internet]. 2012 [cited 2016 Jun 12];2(2):139-274. Available from: http://www.kdigo.org/clinical_practice_guidelines/pdf/KDIGO-GN-Guideline.pdf

[8] Pravitsitthikul N, Willis NS, Hodson EM, Craig JC. Non-corticosteroid immunosuppressive medications for steroid-sensitive nephrotic syndrome in children. Cochrane Database Syst Rev [Internet]. 2013 [cited 2016 Mar 19];(10):CD002290. Available from: http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD002290.pub4/abstract

[9] Hodson EM, Willis NS, Craig JC. Interventions for idiopathic steroid-resistant nephrotic syndrome in children. Cochrane Database Syst Rev [Internet]. 2010 [cited 2016 Mar 18];(11):CD003594. Available from: http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD003594.pub4/abstract

[10] Kronbichler A, Kerschbaurn J, Fernandez-Fresnedo G, Hoxha E, Kurschat CE, Busch M, et al. Rituximab treatment for relapsing minimal change disease and focal segmental glomerulosclerosis: a systemic review. Am J Nephrol [Internet]. 2014 [cited 2016 Mar 18];39(4):322-30. Available from: http://www.karger.com/Article/Abstract/360908 DOI: 10.1159/000360908

[11] Magnasco A, Pietro R, Edefonti A, Murer L, Ghio L, Belingheri M, et al. Rituximab in children with resistant idiopathic nephrotic syndrome. J Am Soc Nephrol [Internet].  2012 [cited 2016 Mar 12];23(6):1117-24. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358759/

[12] Bomback AS, Canetta PA, Beck Jr. LH, Ayalon R, Radhakrishnan J, Appel GB. Treatment of resistant glomerular disease with adrenocorticotropic hormone gel: A prospective trial. Am J Nephrol [Internet]. 2012 [cited 2016 Mar 12];36(1):58-67. Available from: http://www.karger.com/Article/Abstract/339287

[13] Hogan J, Bomback AS, Kehta M, Canetta PA, Rao MK, Appel GB, et al. Treatment of idiopathic FSGS with adrenocorticotropic hormone gel. Clin J Am Soc Nephrol [Internet]. 2013 [cited 2016 Mar 12];8(12):2072-81. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3848392/

[14] Kidney Disease Improving Global Outcomes (KDIGO). KDIGO clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int Suppl [Internet]. 2012 [cited 2016 Jun 12];2(5):337-414 Available from: http://www.kdigo.org/clinical_practice_guidelines/pdf/KDIGO_BP_GL.pdf

[15] Korbet SM. Angiotensin antagonists and steroids in the treatment of focal segmental glomerulosclerosis. Semin Nephrol [Internet]. 2003 [cited 2016 Mar 12];23(2):219-28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12704582

[16] Massy ZA, Ma JZ, Louis TA, Kasiske BL. Lipid-lowering therapy in patients with renal disease. Kidney Int [Internet]. 1995 [cited 2016 Mar 12];48(1):188-98. Available from: http://www.sciencedirect.com/science/article/pii/S008525381559056X DOI: 10.1038/ki.1995.284

[17] Prescott WA, Streetman DD, Streetman DS. The potential role of HMG-CoA reductase inhibitors in paediatric nephrotic syndrome. Ann Pharmacother [Internet]. 2004 [cited 2016 Jun 12];38(12):2105-14. Available from: http://aop.sagepub.com/content/38/12/2105.full.pdf+html

[18] South M, Isaacs D. Practical paediatrics. 7th edition. Sydney: Elsevier; 2012. p.651

[19] Ponticelli C. Recurrence of focal segmental glomerular sclerosis (FSGS) after renal transplantation. Nephrol Dial Transplant [Internet]. 2009 [cited 2016 Mar 13];25(1):25-31. Available from: http://ndt.oxfordjournals.org/content/25/1/25.full

[20] Straatmann C, Kallash M, Killackey M, Iorember F, Aviles D, Bamgbola O, et al. Success with plasmapheresis treatment for recurrent focal segmental glomerulosclerosis in pediatric renal transplant recipients. Pediatr Transplant [Internet]. 2013 [cited 2016 Mar 13];18(1):29-34. Available from: http://onlinelibrary.wiley.com/

[21] Fridey JL, Kaplan AA. Therapeutic apheresis (plasma exchange or cytapheresis): indications and technology [Internet]. Waltham (MA): UpToDate; 2016 [updated 2015 Jul 29, cited 2016 Jun 12]. Available from: http://www.uptodate.com/contents/therapeutic-apheresis-plasma-exchange-or-cytapheresis-indications-and-technology?source=search_result&search=therapeutic+apheresis&selectedTitle=1~150

[22] Trachtman H, Vento S, Gipson D, Wickman L, Gassman J, Joy M, et al. Novel therapies for resistant focal segmental glomerulosclerosis (FONT) phase II clinical trial: study design. BMC Nephrol [Internet]. 2011 [cited 2016 Mar 19];12(8). Available from: http://bmcnephrol.biomedcentral.com/articles/10.1186/1471-2369-12-8

 

Categories
Case Reports

A stroke in a young man with a murmur

A fit 40-year-old man presented to hospital with signs and symptoms consistent with a large anterior stroke. He underwent intravenous thrombolysis and later developed cerebral oedema, which was managed with a decompressive hemicraniectomy. Investigation findings revealed the patient had tight mitral stenosis most likely due to rheumatic heart disease. The report discusses the pathogenesis of stroke due to rheumatic heart disease and compares the use of intravenous thrombolysis and mechanical thrombectomy in the treatment of ischaemic stroke.

Introduction

Cerebrovascular disease is the second leading cause of death and the leading cause of disability in Australia [1]. This case report describes a 40-year-old who presented with symptoms consistent with a large anterior stroke. The report illustrates the causes of stroke in a young person, and outlines the pathogenesis of stroke due to rheumatic heart disease. It also highlights the serious complication of cytotoxic and ionic cerebral oedema that can occur after a large stroke, and the use of hemicranectomy in its management. The case report also discusses and compares the use of intravenous thrombolysis and mechanical thrombectomy in the treatment of ischaemic stroke.

Case Description

A 40-year-old man collapsed at home and was transported by ambulance to the emergency department (ED) of a regional hospital. En route to the hospital he was confused and was noted to have left sided weakness and facial droop. He emigrated from India at age 13, had no known medical conditions, and was on no regular medications. There was no family history of stroke or any prothrombotic conditions. He reportedly did not smoke or drink alcohol, he exercised regularly, and was not overweight.

On examination in the ED, he had a Glasgow Coma Score (GCS) of 13, left-sided facial droop, dysarthria, complete flaccid paralysis of the left upper limb, and left lower limb weakness (unable to resist gravity). He was assessed as having a National Institute of Health Stroke Score (NIHSS) of 14. On auscultation, his chest was clear and heart sounds were reported as being dual with no murmurs. An ECG was performed, which showed he was in sinus rhythm. A computerised tomography (CT) brain scan showed an area of hypodense brain tissue corresponding to the right middle cerebral artery (MCA) territory and a dense right MCA sign, representing increased attenuation of the proximal portion of the MCA (Figure 1). There were no signs of acute haemorrhage on the CT scan. A CT angiogram was not performed. These findings were consistent with a large right MCA ischaemic stroke. Since all inclusion criteria were met with no contraindications to therapy, the patient was treated with alteplase within four hours of symptom onset. The patient was observed for signs of bleeding; and vital signs, cardiac rhythm, blood glucose, and neurological function were checked regularly following alteplase administration. Approximately three hours later, the patient’s GCS dropped to 11. A CT brain scan was repeated, which showed further development of cerebral oedema and effacement of the sylvian fissure, but no acute haemorrhage. Due to his neurological deterioration and worsening cerebral oedema, he was transferred to a tertiary hospital to undergo a decompressive hemicraniectomy.

v7_i2_c01_f1

Figure 1: A non-contrast CT scan of the brain showing a dense right middle cerebral artery sign [32].

On examination in the intensive care unit, post-hemicraniectomy, the patient’s neurological function had improved to a GCS of 14. He still had a dense left hemiparesis, reduced left sided sensation, facial droop, dysarthria, and left-sided neglect. The intensivist identified a diastolic murmur with an opening snap that had not been picked up on previous examinations. The patient was extensively investigated to find the cause of the stroke. This included a full blood count (FBC); urea, electrolytes, and creatinine (UEC); coagulation studies; fasting lipids and glucose; ESR and CRP; syphilis serology; vasculitis screen; prothrombotic screen; chest x-ray; ECG; and carotid artery doppler scan. These results were all normal.  An echocardiogram showed tight mitral stenosis (MS) with a mitral valve area of 1.8 cm2, thickened and restricted valve leaflets, and a large dilated left atrium measuring 49 mm. The systolic pulmonary artery pressure was also measured during echocardiogram which demonstrated no significant pulmonary hypertension.

It was hypothesised by the intensivist that the stroke resulted from a thrombus forming in the large, dilated, left atrium due to paroxysmal atrial fibrillation (AF) caused by the MS. Even though no significant childhood illness was reported by the patient or his family, the MS was believed to be the result of rheumatic heart disease (RHD) based on his echocardiogram findings and the patient’s emigration history.

The patient was reviewed by cardiology and was commenced on warfarin with a target INR of between two to three. It was also recommended that he receive intramuscular penicillin injections of 900 mg monthly for the secondary prevention of RHD. A follow-up echocardiogram and cardiology appointment was booked for six weeks’ time to determine whether a percutaneous balloon mitral valvuloplasty would be indicated to treat his MS. A follow up neurosurgery appointment was also planned for discussion of a future cranioplasty. Once stable, the patient was transferred to a rehabilitation facility to undergo an intensive multi-disciplinary program consisting of physiotherapy, speech therapy, and occupational therapy with the aim of maximising his physical, psychological, social, and financial independence.

Discussion

Young patients with minimal risk factors who have suffered a stroke require more extensive investigations in order to find an underlying cause. Conditions associated with ischaemic stroke in young adults include cardiac abnormalities, premature atherosclerosis, hypertension, vasculopathy including arterial dissection, recent pregnancy, other hypercoagulable states, smoking, illicit drug use, metabolic disorders, and migraine with aura [2]. A meta-analysis by Schurks et al. [3] found migraine with aura to be an independent risk factor for developing ischaemic stroke, but the absolute increase in the risk of stroke was found to be small. The pathophysiology underlying migraine as a possible cause of stroke is not yet clear [3]. Several metabolic conditions are also associated with acute ischaemic stroke in young adults. Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a metabolic condition which leads to progressive degeneration of smooth muscle cells in the vessel wall [4]. Patients with CADASIL may present with migraine, transient ischaemic attack, or ischaemic stroke in late childhood or early adulthood [4]. Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) is another metabolic condition that causes stroke-like episodes in young adults, leading to progressive neurologic dysfunction and dementia. The hallmarks of this syndrome are episodes of hemiparesis, hemianopia, or cortical blindness [5]. Cardiac defects such as patent foramen ovale (PFO) and atrial septal defect (ASD) have also been implicated in the pathogenesis of stroke in younger adults [6]. The mechanism is via an embolus that originates in the systemic venous circulation and enters the systemic arterial circulation through the cardiac defect. Emboli can originate from the lower extremity or pelvic veins, tricuspid vegetations, or right atrial thrombi [6]. Many of these conditions only account for a very small percentage of stroke in young adults. A large cohort study by Putaaya et al. [7] looked at patients aged 15-49 with their first ever ischaemic stroke. They found the most common aetiologies were cardioembolism and cervicocephalic atrial dissection.

Atrial fibrillation is a common causes of cardioembolic stroke, with around 25% of ischaemic stroke patients in Australia having AF [8]. Coronary artery disease, hypertension, heart failure, and valvular heart disease are the most common causes of AF [9].  In this case report the patient’s thrombus was hypothesised to have been caused by paroxysmal AF due to rheumatic MS.  Rheumatic heart disease is a result of cardiac inflammation and scarring triggered by an autoimmune reaction to infection with group A streptococci [10]. This can result in thickened and restricted valve leaflets, leading to valve stenosis and/or regurgitation [10]. Rheumatic heart disease is the most common cause of MS [11]. One of the most common complications of rheumatic MS is AF [12]. In rheumatic MS, AF may initially be paroxysmal, but eventually it becomes chronic as the MS and left atrial dilatation progress [11]. AF may cause systemic embolism from mural thrombus development in the left atrium leading to stroke. Patients with MS and AF should therefore receive long-term prophylactic anticoagulation. Left atrial thrombus can occur in MS, even when sinus rhythm is present. This is due to left atrial dilatation, low blood velocity, and disorganised blood flow. Therefore, prophylactic anticoagulation should also be considered for patients with MS and a dilated left atrium even if in sinus rhythm [12]. The 2014 American Heart Association (AHA) guidelines on management of valvular heart disease recommends the use of warfarin in patients with MS and at least one of the following conditions: paroxysmal AF, permanent AF, prior embolic event, or proven left atrial thrombus [13]. Newer oral anticoagulants are now approved for the prevention of systemic embolism in adults with non-valvular AF. However, they are not approved for use in patients with MS, as this patient group was excluded in clinical trials [13].

Another treatment option for MS is percutaneous balloon mitral valvuloplasty. This procedure involves a balloon catheter being inserted via the femoral vein and placed in the left atrium. The balloon is positioned across the stenotic mitral valve and inflated, thereby separating the stenotic leaflets along the commissures. The criteria for percutaneous balloon mitral valvuloplasty in an asymptomatic patient with MS is a mitral valve area ≤1.0 cm2, favorable valve morphology, absence of moderate to severe mitral regurgitation, and no left atrial thrombus [13]. The patient in this case report did not meet the AHA criteria and therefore is unlikely to undergo valvuloplasty. In asymptomatic patients with MS, follow-up echocardiography is recommended every three to five years, if the mitral valve area is >1.5 cm2 [13]. The patient in this case report should therefore undergo regular echocardiograms to monitor the progression of his MS.

One of the serious complications of a large MCA stroke is the development of cytotoxic and ionic cerebral oedema. Cerebral oedema is the result of cells being unable to maintain ATP-dependent Na+/K+ membrane pumps which are responsible for a high extracellular and low intracellular Na+ concentration [14]. When energy falls due to cerebral ischaemia, these pumps cease to operate and Na+ accumulates in the cell, drawing with it Cl and water along an osmotic gradient [14]. Space-occupying cerebral oedema can elevate intracranial pressure and lead to brain herniation [15]. The development of space-occupying cerebral oedema due to a large infarction leads to neurologic deterioration with signs that typically include decreased arousal, pupillary changes, and worsening of motor responses [16]. These neurological signs are indicators of the need to intervene urgently. Decompressive hemicraniectomy and durotomy is a surgical technique used to relieve the increased intracranial pressure and brain tissue shifts that occur in the setting of large cerebral hemisphere space-occupying lesions. The technique involves removal of bone tissue and incision of the restrictive dura mater covering the brain, allowing swollen brain tissue to herniate upwards through the surgical defect rather than downwards to compress the brainstem [16]. In patients with malignant MCA infarction, decompressive surgery undertaken within 48 hours of stroke onset reduces mortality and increases the number of patients with a favorable functional outcome [17].

The immediate aim in the management of acute ischaemic stroke is to recanalise the occluded vessel as quickly, safely, and effectively as possible to restore blood supply to the ischaemic brain region [18]. Thrombolytic therapy is an effective strategy for salvaging ischaemic brain tissue that is not already infarcted following ischaemic stroke [19]. However, there is a risk of haemorrhage, a narrow window during which it can be administered, and multiple contraindications to its use [18]. The indications for administering thrombolysis include the onset of ischaemic stroke within the preceding four-and–a-half hours in Australia and Europe, and within three hours in the United States. There must also be no signs of haemorrhage on the brain CT scan [18]. Where available, assessment of ischaemic brain injury with either diffusion and perfusion MRI or with perfusion CT should be performed if the findings are likely to influence treatment decisions. However, these should be used rather than CT only if it does not delay treatment with intravenous alteplase [20]. A 2014 meta-analysis by Emberson et al. [21] evaluated individual patient data from 6756 subjects who were allocated to intravenous alteplase or control within three to six hours of acute ischaemic stroke onset. The primary outcome measure was the proportion of patients achieving a good stroke outcome at three or six months as defined by a modified Rankin scale score. The modified Rankin scale measures the degree of disability or dependence in the patient’s daily activities [21]. The results of Emberson’s analysis showed that the sooner intravenous alteplase treatment is initiated, the more likely it is to be beneficial, and that the benefit extends to treatment started within four-and-a-half hours of stroke onset [21]. It was found that beyond five hours, harm may exceed benefit as alteplase increased the risk of symptomatic intracranial haemorrhage (6.8% vs 1.3% control) and fatal intracranial haemorrhage within seven days (2.7% vs 0.4% control) [21]. A recent systematic review by Wardlaw et al. [22] found similar results, that treatment with intravenous alteplase within three hours of stroke was substantially more effective in reducing death or dependency than therapy given up to six hours after stroke onset.

Intra-arterial mechanical thrombectomy is another treatment option for patients with ischaemic stroke. Five large randomised control trials [23-27] demonstrated that early intra-arterial treatment using mechanical thrombectomy devices is superior to standard treatment with intravenous thrombolysis alone for large proximal vessel ischaemic stroke in the anterior circulation. The inclusion criteria for mechanical thrombectomy include a CT brain scan ruling out intracranial haemorrhage, angiography demonstrating a proximal large artery occlusion in the anterior circulation, and thrombectomy initiated within six hours of stroke onset [23]. One problem that limits the widespread clinical use of mechanical thrombectomy is that only an estimated ten percent of patients with acute ischaemic stroke have a proximal large artery occlusion in the anterior circulation and present early enough to qualify for mechanical thrombectomy [18]. Another issue that limits its widespread use is that it is restricted to major stroke centres that have specialist interventional radiology resources and expertise able to perform the procedure [18]. The Queensland Health Policy Advisory Committee on Technology published a report in December 2015 that looked at mechanical thrombolysis for ischaemic stroke [29]. They found that mechanical thrombectomy can only be safely performed in experienced centres with appropriate support in terms of imaging and multidisciplinary care, and that only large tertiary centres with stroke units are able to provide this service. They noted that this may have implications for patients who are not near to these services, especially given the time frame within which the procedure can be performed. This has implications for accessibility for rural and remote patients, and associated costs if transferring patients to tertiary centers is required [29]. Another issue is that transferring patients to tertiary centres can delay the onset of stroke treatment. However, eligible patients can receive standard treatment with intravenous alteplase if they present to hospitals where thrombectomy is not an option. Those patients with qualifying anterior circulation strokes can then be transferred to tertiary stroke centers where intra-arterial thrombectomy is available [30].

In this case report, the patient was discussed at an interventional radiology meeting at the tertiary hospital. The radiologist commented that if this patient had initially presented to the tertiary hospital rather than the regional hospital, the patient would have undergone a mechanical thrombectomy instead of, or as well as, the intravenous thrombolysis. Similar views are expressed in a 2015 editorial by neuroradiologists Pierot and Derdeyn [31]. They conclude that endovascular treatment has now been proven effective for a well-defined subset of patients with acute stroke, provided there is careful patient selection, time to reperfuse, and reperfusion rate is optimised. This illustrates that mechanical thrombectomy is now the treatment of choice for proximal, anterior, ischamic stroke if the resources and personnel are available.

Consent Declaration

Informed consent was obtained from the patient and next-of-kin for publication of this case report and accompanying figures.

Conflicts of Interest

None declared.

References

[1]    Australian Institute of Health and Welfare. Stroke and its management in Australia: an update. Canberra: AIHW. 2013. Cardiovascular disease series no. 37.

[2]    Ji R, Schwamm L, Pervez M, Singhal A. Ischemic stroke and transient ischemic attack in young adults: risk factors, diagnostic yield, neuroimaging, and thrombolysis. JAMA Neurol. 2013;70(1):51-57.

[3]    Schürks M, Rist P, Bigal M. Migraine and cardiovascular disease: systematic review and meta-analysis. BMJ. 2009; 339:b3914.

[4]    Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser M. Cadasil. Lancet Neurol. 2009;8(7):643-53.

[5]    Sproule D, Kaufmann P. Mitochondrial encephalopathy, lactic acidosis, and stroke like episodes: basic concepts, clinical phenotype, and therapeutic management of MELAS syndrome. Ann N Y Acad Sci. 2008;1142:133-58.

[6]    Lamy C, Giannesini C, Zuber M, Arquizan C, Meder J, Trystram D, et al. Clinical and imaging findings in cryptogenic stroke patients with and without patent foramen ovale: the PFO-ASA Study. Atrial Septal Aneurysm. Stroke. 2002;33:706-711.

[7]    Putaala J, Metso A, Metso T, Konkola N, Kraemer Y, Haapaniemi E, et al. Analysis of 1008 consecutive patients aged 15 to 49 with first-ever ischemic stroke: the Helsinki young stroke registry. Stroke. 2009;40(4)1195-203.

[8]    Gattellari M, Goumas C, Aitken R, Worthington J. Outcomes for patients with ischemic stroke and atrial fibrillation. Cerebrovasc Dis. 2010;32:370–82 .

[9]    Falk R. Atrial fibrillation. N Engl J Med. 2001;344:1067-78.

[10]  Patrick A. Pathology of rheumatic heart disease [Internet]. Emedicine. 2013 Oct 15 [cited 2015 Aug 10]. Available from: http://emedicine.medscape.com/article/1962779-overview.

[11]  National Heart Foundation of Australia and the Cardiac Society of Australia and New Zealand. Australian guideline for prevention, diagnosis and management of acute rheumatic fever and rheumatic heart disease [internet]. Canberra: National Heart Foundation of Australia. 2012 [cited 2015 Aug 10]. 135 p. Available from: https://www.rhdaustralia.org.au/arf-rhd-guideline

[12]  Keren G, Etzion T, Sherez J. Atrial fibrillation and atrial enlargement in patients with mitral stenosis. Am Heart J. 1987;114(5):1146-55.

[13]  Nishimura R, Otto C, Bonow R, Carabello B, Erwin J, Guyton R, et al. AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;63(22)57-185.

[14]  Simard M, Kent T, Chen M, Tarasov K, Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol. 2007;6(3):258-68.

[15]  Wijdicks E, Sheth K, Carter B, Greer D, Kasner S, Kimberly W, et al. Recommendations for the management of cerebral and cerebellar infarction with swelling: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45(4):1222-38.

[16]  Gupta R, Elkind M. Decompressive hemicraniectomy for malignant middle cerebral artery territory infarction, UpToDate [Internet]. 2015 Aug. [cited 2015 Aug 8]. Available from: http://www.uptodate.com/contents/decompressive-hemicraniectomy-for-malignant-middle-cerebral-artery-territory-infarction.

[17]  Vahedi K, Hofmeijer J, Juettler E, Vicaut E, George B, Algra A, et al. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. Lancet Neurol. 2007;6(3):215-22.

[18]  Samuels O, Filho J. Reperfusion therapy for acute ischemic stroke, UpToDate [Internet]. 2015 Aug. [cited 2015 Aug 8]. Available from: http://www.uptodate.com/contents/reperfusion-therapy-for-acute-ischemic-stroke.

[19]  Islam M, Anderson C, Hankey G, Hardie K, Carter K, Broadhurst R, et al. Trends in incidence and outcome of stroke in Perth, Western Australia during 1989 to 2001: the Perth community stroke study. Stroke. 2008;39(3):776–82.

[20]  Filho j, Neuroimaging of acute ischemic stroke, Uptodate [internet]. 2016 May. [cited 2016 June 10]. Available from: http://www.uptodate.com/contents/neuroimaging-of-acute-ischemic-stroke.

[21]  Emberson J, Lees K, Lyden P, Blackwell L, Albers G, Bluhmki E, et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet. 2014;384(9958):1929-35.

[22]  Wardlaw J, Murray V, Berge E, Del Zoppo G. Thrombolysis for acute Ischemic stroke. Cochrane database syst rev [internet]. 2014;7(4). Available from: http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD000213.pub3.

[23]  Berkhemer O, Fransen P, Beumer D, Van den Berg L, Lingsma H, Yoo A, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372:11-20.

[24]  Goyal M, Demchuk A, Menon B, Eesa M, Rempel J, Thornton J, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372:1019-30.

[25]  Saver J, Goyal M, Bonafe A, Diener H, Levy E, Pereira V, et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J of Med. 2015;372(24):2285-95.

[26]  Campbell B, Mitchell P, Kleinig T, Dewey H, Churilov L, Yassi N, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372:1009-18.

[27]  Jovin T, Chamorro A, Cobo E, Molina C, Rovira A, San Roman L, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med. 2015;372(24):2296-306.

[28]  Furlan A. Endovascular therapy for stroke–it’s about time. N Engl J Med 2015;372(24):2347-9.

[29]  Queensland department of health policy advisory committee on technology.  Endovascular clot retrieval with thrombolysis for ischemic stroke [internet]. Brisbane. Queensland department of health. 2015 Dec [cited Mar 2016]. 18 p. Available from: https://www.health.qld.gov.au/healthpact/docs/briefs/wp226-mech-thrombectomy.pdf

[30]  Sheth KN, Smith EE, Grau-Sepulveda MV, Kleindorfer D, Fonarow G, Schwamm L. Drip and ship thrombolytic therapy for acute ischemic stroke: use, temporal trends, and outcomes. Stroke. 2015;46(3):732-9.

[31]  Pierot L, Derdeyn C. Interventionalist perspective on the new endovascular trials. Stroke. 2015;46:1440-46.

[32]  Gaillard F. A non-contrast CT scan of the brain showing a dense right middle cerebral artery sign [image on the internet]. Radiopaedia. [viewed 2016 June 10]. Available from: http://radiopaedia.org/cases/17958.