Categories
Feature Articles

Vocal cord dysfunction: A co-existent or alternative diagnosis in refractory asthma?

Asthma is a common condition. Numerous studies have consistently demonstrated that refractory asthma, while constituting under 10% of all asthma patients, consumes a disproportionate amount of healthcare costs. It is therefore imperative for clinicians to be aware of common mimics of asthma that can present with similar symptoms leading to inaccurate assessment of asthma. One such mimic is vocal cord dysfunction, (VCD), which is the intermittent, abnormal adduction of the vocal cords during respiration. VCD can exist independently, but it frequently co-exists with asthma and consequently has been frequently misdiagnosed as asthma. The gold standard for diagnosing VCD is through direct visualisation via laryngoscopy, but there has been a move towards developing alternative non-invasive means of diagnosing VCD in the acute setting. This article reviews the literature surrounding VCD, including management options, both in the acute and long-term setting.

Introduction46

Asthma is a common condition. In 2011-2012 the prevalence of asthma was measured at 10.2%, which approximates to about 2.3 million Australians. [1] By international standards, this is a high statistic, translating to a significant burden on the healthcare infrastructure. An estimated $655 million was spent on asthma in the 2008-09 financial year, accounting for 0.9% of the total allocated healthcare expenditure.

The aim of asthma management is to achieve good long-term control. However, evaluation of asthma control relies heavily on symptom assessment. [2] The National Asthma Council of Australia utilises the Asthma Score to gauge a patient’s asthma control, based on frequency of asthma symptoms, nocturnal symptoms, effect on activities of daily living, as well as use of reliever medication. [3] However, it is challenging to distinguish between poorly controlled or refractory asthma versus an alternative diagnosis with a similar presentation. As such, this reliance on symptom assessment as a measure of asthma control has its shortcomings.

Numerous studies conducted across several countries have consistently demonstrated that refractory asthma, while constituting under 10% of all asthma patients, consumes a disproportionate amount of healthcare costs. [4,5] This often occurs in the setting of treatment failure and escalation of drug therapy, as well as recurrent or prolonged hospital admissions. [6] Current management guidelines advocate for clinicians to consider issues surrounding compliance, technique, as well as to reconsider the possibility of an alternative diagnosis in the context of treatment failure. It is therefore imperative for clinicians to be aware of common mimics of asthma or co-morbidities that can present with similar symptoms leading to inaccurate assessment of asthma control. One such mimic is vocal cord dysfunction (VCD).

Vocal cord dysfunction

VCD is the intermittent, abnormal adduction of the vocal cords during respiration. [7,8] It can affect both inspiratory and expiratory phases, resulting in variable upper airway obstruction at the level of the larynx. [6] VCD has been described throughout the medical literature by several terms, including Munchausen’s stridor [9], factitious asthma, [10] and paradoxical vocal cord dysfunction. [11]

Dunglison first described it in 1842, referring to it as ‘hysteric croup’ at that time. [12] Subsequent authors documented similar descriptions of this presentation under various names in the medical literature, but it was Mackenzie who first visualised the paradoxical closure of the vocal folds with inspiration by laryngoscopic evaluation in 1869. [13] Interest in VCD resurfaced in 1974, when Patterson et al. demonstrated modern laryngoscopic evidence of this pathology. [9] However, it was only from 1983, following a case series by Christopher et al. [14], that VCD was formally described as a syndrome, prompting a surge in interest until today.

Epidemiology

There are no large population-based studies examining the prevalence of VCD. The lack of specific diagnostic criteria for VCD further confounds evaluation of its epidemiology, leading to a range of prevalence estimates between 2.5 and 22% derived from small studies. [15] Nonetheless, it has been reported to be more prevalent among females, and is common in persons between 20-40 years of age. [16]

VCD can exist independently, but it frequently co-exists with asthma. In the first large case series involving 95 patients, Newman et al. reported 56% of patients had co-existing asthma. [8] Similarly, Yelken et al. found that VCD was present in 19% of 94 asthmatic patients, compared to 5% in 40 control subjects. [17] Parsons et al. concluded from their study of 59 patients that VCD occurs across a spectrum of asthma severity and is also prevalent in mild-to-moderate asthmatics. [18]

Correspondingly, the literature is replete with reports of VCD misdiagnosed as asthma. In a review by Morris et al. up to 380 of 1161 (32.7%) patients with VCD were initially misdiagnosed and in fact that many patients only had VCD without underlying asthma. [16] Similarly, Newman et al. concluded that VCD was the reason for treatment failure in 30% of cases in their prospective evaluation of 167 patients with refractory asthma. Among these cases, one third exclusively suffered from VCD, while the rest had co-existing asthma. [8]

Diagnosing VCD

While the gold standard for diagnosing VCD is through direct visualisation via laryngoscopy [19], this is often not frequently utilised due to practical reasons. There has been a move towards developing alternative non-invasive means of diagnosing VCD in the acute setting. Diagnostic approaches such as methacholine provocation [20] and video stroboscopy [21] have not proven useful in providing conclusive evidence to aid a diagnosis.

There is limited utility in using pulmonary function tests to diagnose VCD in the acute setting, this difficulty also being due to VCD’s intermittent symptoms. VCD may reduce both the forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) with no change in the forced expiratory ratio (FER = FEV1/ FVC), suggesting that such a pattern in a patient undergoing evaluation for asthma should raise the possibility of VCD. Yet, a reduction in FER as consistent with an obstructive pattern such as asthma also does not rule out concomitant VCD. [8,16,22]. A characteristic truncation of the inspiratory limb of the flow volume loop has also been described in symptomatic inspiratory VCD, with similar changes to the expiratory loops in expiratory VCD. However, a review by Morris et al. found such FVL changes to be present in only 28.1% of all VCD patients. [16]

Traister et al. developed the Pittsburgh Vocal Cord Dysfunction index as a clinical tool to aid clinicians in distinguishing VCD from asthma clinically. [23] Based on the largest to-date retrospective study comparing 89 patients with VCD and 59 patients with asthma, the authors identified clinical features such as dysphonia, throat tightness and the absence of wheezing as key distinguishing symptoms of VCD. The Pittsburgh VCD index had good sensitivity (83%) and specificity (95%), and accurately corresponded with 77.8% of laryngoscopy-proven VCD. [23]

However, Traister et al. also cautioned against the use of the scoring index in patients with both VCD and asthma. Numerous studies have concluded that differentiating one condition from the other based on symptomology can be challenging if both conditions co-exist. [14] For example, Parsons et al. found that classic VCD features like hoarseness and stridor occurred infrequently in patients with both conditions and did not necessarily distinguish between asthmatics with and without VCD. [18]

Clinicians can also utilise several clinical signs and simple bedside tests to aid diagnosis. Localisation of airflow obstruction to the laryngeal area via auscultation is an important clinical discriminatory feature in patients with VCD. In addition to that, the disappearance or reduction of wheeze with expiration against positive pressure (via a straw) when auscultating over the larynx would suggest an element of VCD.

The introduction of high resolution 320-slice CT has permitted visualisation of the moving anatomical structures. [24] Holmes et al. explored the possibility of utilising this to provide comprehensive and accurate images of vocal cord movement during respiration. In this study, dynamic 320-slice volume CT accurately identified VCD in 4 of 9 patients diagnosed with asthma. [24] Colour Doppler ultrasound of the vocal cords has also been suggested as a potential means of diagnosing symptomatic VCD, with accuracy approximating that of laryngscopy, according to one report. [25]

Management of VCD

Management of VCD first requires establishing the correct diagnosis.  While this may be difficult in the acute setting, it is imperative as continuing to treat for asthma will not yield any benefit.

Reassurance of the patient has been widely reported in numerous case reports as effective in terminating VCD in the acute setting. [10,26,27,28,29] Adopting breathing patterns such as panting, [30,31] diaphragmatic breathing or breathing against positive-pressure (through a straw, pursed-lip breathing) have also been described as effective measures to abort VCD symptoms acutely. Similarly, administering positive pressure ventilation via CPAP has been demonstrated in several case reports to resolve an acute attack. [32]

Benzodiazepines have been noted to be very effective in terminating VCD episodes, mainly for their anxiolytic and sedative effect. [16] Heliox, a mixture of oxygen and helium, has also been used to both treat and differentiate VCD from other causes of airway obstruction, with a rapid and effective response [33], however larger studies are lacking.

The long-term management of VCD revolves mainly around a multidisciplinary approach. Speech therapy has been identified as a mainstay treatment for VCD, with emphasis on vocal cord relaxation and breathing techniques. [34] Psychological interventions, such as psychotherapy, behavioural therapy as well as the use of anxiolytics and antidepressants have also been demonstrated in a systematic review to be useful adjuncts to speech therapy. [35]

There is a paucity of high quality randomised control trials studying therapeutic options for VCD. Botulinum toxin has been used to relieve symptoms of VCD in several cases, although its use is at present largely experimental due to the lack of research. Its neuromuscular effect of inhibiting acetylcholine release relaxes laryngeal muscles which lasts up to 14 weeks, facilitating inspiratory and expiratory airflow. [36] Baxter et al. evaluated the benefits of botulinum toxin in a small sample size of 11 patients with treatment resistant asthma and abnormal vocal cord movement. Asthma control test scores (a five-question self-administered tool), CT visualisation of vocal cord narrowing, as well as spirometry were used to evaluate response following botulinum toxin treatment. The study concluded that local treatment with botulinum toxin could be effective in these cases, although a placebo effect could not be ruled out. [37]

Conclusion

The novel utilisation of existing imaging techniques has facilitated the diagnosis of VCD, a condition that has been described since the 19th century, yet it continues to remain a diagnostic challenge because it demands certain level of clinical suspicion prior to further workup.  There is also a lack of awareness of its existence and its presentation consequently has often been attributed to asthma. This is further complicated by its common coexistence with asthma, which can lead to unnecessary medication use without beneficial impact and increased health care utilisation.

Acknowledgements

None.

Conflict of interest

None declared.

Correspondence

G Yong: glenn.yong.kw@gmail.com

References

[1] Australian Bureau of Statistics. Australian Health Survey: First Results, 2011-12 [Internet]. 2012. Available from: http://www.ausstats.abs.gov.au/Ausstats/subscriber.nsf/0/1680ECA402368CCFCA257AC90015AA4E/$File/4364.0.55.001.pdf

[2] Pocket Guide for Asthma Management and Prevention | Documents / Resources | GINA [Internet]. [cited 2014 Sep 2]. Available from: http://www.ginasthma.org/documents/1

[3] Australian Asthma Handbook | Table. Asthma Score (printable) [Internet]. Australian Asthma Handbook. [cited 2014 Sep 2]. Available from: http://www.asthmahandbook.org.au/table/show/88

[4] Serra-Batlles J, Plaza V, Morejón E, Comella A, Brugués J. Costs of asthma according to the degree of severity. Eur Respir J. 1998 Dec;12(6):1322–6.

[5] Godard P, Chanez P, Siraudin L, Nicoloyannis N, Duru G. Costs of asthma are correlated with severity: a 1-yr prospective study. Eur Respir J. 2002 Jan;19(1):61–7.

[6] Kenn K, Balkissoon R. Vocal cord dysfunction: what do we know? Eur Respir J. 2011 Jan 1;37(1):194–200.

[7] Newman KB, Dubester SN. Vocal Cord Dysfunction: masquerader of asthma. Semin Respir Crit Care Med. 1995;161–7.

[8] Newman KB, Mason UG, Schmaling KB. Clinical features of vocal cord dysfunction. Am J Respir Crit Care Med. 1995 Oct;152(4 Pt 1):1382–6.

[9] Patterson R, Schatz M, Horton M. Munchausen’s stridor: non-organic laryngeal obstruction. Clin Allergy. 1974 Sep;4(3):307–10.

[10] Downing ET, Braman SS, Fox MJ, Corrao WM. Factitious asthma. Physiological approach to diagnosis. JAMA J Am Med Assoc. 1982 Dec 3;248(21):2878–81.

[11] Newsham KR, Klaben BK, Miller VJ, Saunders JE. Paradoxical Vocal-Cord Dysfunction: Management in Athletes. J Athl Train. 2002 Sep;37(3):325–8.

[12] Dunglison RD. The Practice of Medicine. Phila Lea Blanchard. 1842;257–8.

[13] Mackenzie M. The use of the laryngoscope in diseases of the throat : with an appendix on rhinoscopy [Internet]. Philadelphia : Lindsay and Blakiston; 1865 [cited 2014 Sep 6]. Available from: http://archive.org/details/67821040R.nlm.nih.gov

[14] Christopher KL, Wood RP, Eckert RC, Blager FB, Raney RA, Souhrada JF. Vocal-cord dysfunction presenting as asthma. N Engl J Med. 1983 Jun 30;308(26):1566–70.

[15] Jain S, Bandi V, Zimmerman J. Incidence of vocal cord dysfunction in patients presenting to emergency room with acute asthma exacerbation. Chest. 1997;(11):243.

[16] Morris MJ, Allan PF, Perkins PJ. Vocal Cord Dysfunction: Etiologies and Treatment. Clin Pulm Med. 2006 Mar;13(2):73–86.

[17] Yelken K, Yilmaz A, Guven M, Eyibilen A, Aladag I. Paradoxical vocal fold motion dysfunction in asthma patients. Respirol Carlton Vic. 2009 Jul;14(5):729–33.

[18] Parsons JP, Benninger C, Hawley MP, Philips G, Forrest LA, Mastronarde JG. Vocal cord dysfunction: beyond severe asthma. Respir Med. 2010 Apr;104(4):504–9.

[19] Al-Alwan A, Kaminsky D. Vocal cord dysfunction in athletes: clinical presentation and review of the literature. Phys Sportsmed. 2012 May;40(2):22–7.

[20] Perkins PJ, Morris MJ. Vocal cord dysfunction induced by methacholine challenge testing. Chest. 2002 Dec;122(6):1988–93.

[21] Ibrahim WH, Gheriani HA, Almohamed AA, Raza T. Paradoxical vocal cord motion disorder: past, present and future. Postgrad Med J. 2007 Mar;83(977):164–72.

[22] Niven RM, Pickering CA. Vocal cord dysfunction and wheezing. Thorax. 1991 Sep;46(9):688.

[23] Traister RS, Fajt ML, Landsittel D, Petrov AA. A novel scoring system to distinguish vocal cord dysfunction from asthma. J Allergy Clin Immunol Pract. 2014 Feb;2(1):65–9.

[24] Holmes PW, Lau KK, Crossett M, Low C, Buchanan D, Hamilton GS, et al.  Diagnosis of vocal cord dysfunction in asthma with high resolution dynamic volume computerized tomography of the larynx. Respirol Carlton Vic. 2009 Nov;14(8):1106–13.

[25] Ooi LL. Re: Vocal cord dysfunction: two case reports. Ann Acad Med Singapore. 1997 Nov;26(6):875.

[26] Michelsen LG, Vanderspek AF. An unexpected functional cause of upper airway obstruction. Anaesthesia. 1988 Dec;43(12):1028–30.

[27] Lund DS, Garmel GM, Kaplan GS, Tom PA. Hysterical stridor: a diagnosis of exclusion. Am J Emerg Med. 1993 Jul;11(4):400–2.

[28] Dailey RH. Pseudoasthma: a new clinical entity? JACEP. 1976 Mar;5(3):192–3.

[29] George MK, O’Connell JE, Batch AJ. Paradoxical vocal cord motion: an unusual cause of stridor. J Laryngol Otol. 1991 Apr;105(4):312–4.

[30] Brugman SM, Simons SM. Vocal cord dysfunction: don’t mistake it for asthma. Phys Sportsmed. 1998 May;26(5):63–85.

[31] Pitchenik AE. Functional laryngeal obstruction relieved by panting. Chest. 1991 Nov;100(5):1465–7.

[32] Reybet-Degat O. [Pathology of craniocervical junction and sleep disorders]. Rev Neurol (Paris). 2001 Nov;157(11 Pt 2):S156–60.

[33] Weir M. Vocal cord dysfunction mimics asthma and may respond to heliox. Clin Pediatr (Phila). 2002 Feb;41(1):37–41.

[34] Bahrainwala AH, Simon MR. Wheezing and vocal cord dysfunction mimicking asthma. Curr Opin Pulm Med. 2001 Jan;7(1):8–13.

[35] Guglani L, Atkinson S, Hosanagar A, Guglani L. A systematic review of psychological interventions for adult and pediatric patients with vocal cord dysfunction. Front Pediatr. 2014;2:82.

[36] Grillone GA, Blitzer A, Brin MF, Annino DJ, Saint-Hilaire MH. Treatment of adductor laryngeal breathing dystonia with botulinum toxin type A. The Laryngoscope. 1994 Jan;104(1 Pt 1):30–2.

[37] Baxter M, Uddin N, Raghav S, Leong P, Low K, Hamza K, et al. Abnormal vocal cord movement treated with botulinum toxin in patients with asthma resistant to optimised management. Respirol Carlton Vic. 2014 May;19(4):531–7.

Categories
Feature Articles

Saving behaviour cleans hands: A reflection on the behavioural psychology of hand hygiene

Introduction44

Since the time of Semmelweis, it has long been realised that hands are the commonest vehicles for the spread of hospital-acquired infections (HAI). If all transmission opportunities, as defined by the World Health Organisation (WHO), were met with proper hand hygiene, the current incidence of HAIs could reduce by more than half. [1-3] Unfortunately, almost every hospital fails at this. Globally, the diverse roots of noncompliance in healthcare workers (HCWs) need to be tackled in a multifactorial way. Lack of resources, high-intensity workloads and ignorance about hand hygiene necessity or technique are often first to be blamed and rightly so, according to large studies in multiple countries. [4-6] However, in most Australian hospitals where regularly-replenished hand hygiene products sit at every bedside and informative posters are abound on corridor walls, compliance still remains at 82.2&. [7] Ajzen’s Theory of Planned Behaviour (TPB) proposes that it is not only the factors external to the individual, such as those aforementioned, but also internal behavioural factors that shape an individual’s hand hygiene practices. [8] These internal factors, often less explored than external factors, will be the topic of discussion.

 Centrality of Intention

The central thesis of TPB is this: the likelihood of performing a voluntary behaviour is best predicted by the intention to do it. [8] According to Ajzen, intention is the extent of effort one is willing to go to in order to achieve that action. [8] A 2012 Cochrane review and a landmark hand hygiene behavioural study by O’Boyle et al. demonstrates this positive association between intention and behavioural achievement. [15,16] Even so, it is imperative early in this discussion that we not assume that self-reported scores are good measures of actual compliance; in reality, the association is demonstrably poor because external factors do commonly prevent intention from actualising as behaviour. [15,17] However, external factors are not the focus here.

Intention is determined by three secondary internal factors – attitude, social norm and perceived behavioural control – that are, in turn, a function of beliefs based on one’s information about a behaviour. [14] We will now explore these factors in detail.

Attitude

Attitudes derive from an individual’s cognitive and emotional evaluation of behaviour. This evaluation, in turn, depends on the various positive or negative attributes and consequences the individual has associated with the behaviour. If HCWs perceive positive attributes about hand hygiene, the desirable attitudes this yields increases their levels of intention and correlate well with compliance. [6,14,15] One’s perceptions hinge on one’s beliefs about a behaviour. [14,15] Based on a focus group study of 754 nurses and a 2006 review, beliefs about hand hygiene can originate inherently or electively and account for 64% and 76%, respectively, of variation in intention. [18]

Inherent beliefs

During most individuals’ childhoods, exposure of hands to ‘dirtiness’ becomes ritualised as a trigger for disgust and the subsequent urge to cleanse one’s hands. Consequently, inherent patterns develop. [18-20] The toilet-training years may see a solidification of positive attitudes towards hand hygiene behaviours specifically in situations where individuals feel the instinctual need to ‘emotionally cleanse’ themselves. [18] This positive association appears consistent across diverse demographic groups. [21] However, what varies is each individual’s tolerance threshold of contamination before they feel the urge to cleanse, in accordance with culture, exposure to education and environment. [1] The 500 Australian respondents to a 2008 international hygiene beliefs survey on average scored one of the lowest levels of concern about “getting sick because of poor hygiene” and “being infected in contact with other people”. [22] Yet, a similar survey found that Australians do still place a strong emphasis on handwashing. [23] In reality, the hand hygiene standards promoted by Australian culture in general may be suboptimal to what is actually required for microbiological protection. It is common for nurses to only feel compelled to wash their hands after becoming ‘emotionally soiled’ from touching patients’ axillae, groins, genitals or excretions, if visibly contaminated, or from feeling moist or gritty, but not in other situations. [18] Although long-standing, developmentally-based inherent beliefs about dirtiness are possibly the most challenging of the psychological factors to address, one intervention could be the incorporation of emotionally evocative themes and slogans in infection control campaigns.

Compliance figures also suffer when the inherent belief associating hand hygiene with self-protection is undermined by products that have caused users pain, discomfort and/or the occasional hypersensitivity reaction. With the transition to the standardised use of emollient-containing alcohol-based handrubs (ABHR) across Australian healthcare facilities since 2008, the skin damage, irritation and dryness associated with handwashing with soap have dramatically reduced. [24-26] Although the addition of emollients to the ABHR solutions has greatly reduced associated stinging sensations and contact dermatitis, ABHRs remain painful to use for some, most likely due to improper use, having split or cracked skin, or allergic dermatitis. [26] Whatever the reason, the formation of new inherent beliefs that emotionally link pain and discomfort with correct hand hygiene behaviour continually works to worsen behavioural compliance. [1,27] It seems the only way to address this problem is to await advances in dermatological products in order to further enhance the dermal tolerance of ABHRs.

Elective beliefs

On the other hand, elective attitudes originate from beliefs that deliver the schema of hand hygiene over to choice. Elective beliefs measure various hand hygiene behaviours according to a less intuitive outcome of a higher order – microbiological self-protection proved by objective laboratory evidence. The opportunities for hand hygiene just after HCWs touch ‘emotionally clean’ parts of patients or inanimate surroundings, autoclaved equipment, hospital telephones or computers are the key targets of these elective beliefs. [18] Inherent disgust alone cannot be relied upon to stimulate enough intention in HCWs to engage in appropriate disinfection during these situations. Indeed, it is no surprise that hand hygiene opportunities that specifically relate to elective beliefs are the ones most frequently neglected by nurses, especially during peaks in workload. [18]

It seems the solution is not as simple as correcting inaccurate elective beliefs. In contrast with the way inherent beliefs naturally permeate one’s attitudes, translating elective beliefs into attitudes is often met with resistance. [18] Although the best targets for change would be unique for every HCW, some common determinants affecting elective belief-to-attitude translation have been identified. Firstly, elective beliefs regarding hand hygiene opportunities at work also tend to mirror hygiene beliefs about corresponding out-of-hospital situations. The more concerned a HCW is about handwashing before preparing a meal or after stroking pets or using a computer, the more likely they are to have positive attitudes about using the proper hand hygiene after ‘emotionally clean’ events at work. [18] Notably, the previously mentioned 2008 hygiene beliefs survey demonstrated Australians were amongst those who expressed the lowest concern for “hand hygiene while cooking and eating”. [22] Perhaps, infection control campaigns could be made more effective by challenging the household habits and beliefs of HCWs in addition to their usual chastisements targeting scenarios within the work context.

Secondly, although this subject requires further research, religious attitudes concerning hand cleansing rituals could also influence the elective beliefs of Buddhist, Hindu, Muslim and Orthodox Jewish HCWs. They are encouraged, if not commanded, to clean their hands for hygiene, usually following ‘unclean’ acts and meals. [1] Additionally, having a community-oriented mindset in favour of protecting others would also strengthen positive attitudes towards hand hygiene. [1] Although less than 7.3% of the Australian population affiliate with these religions and much of Western society tends towards individualistic ideals, [28] these findings could assist local campaigns in areas where there are more individuals within these target groups, for example, at hospitals located in culturally and linguistically diverse suburbs.

Lastly, a more modifiable aspect of elective beliefs that could strengthen good attitudes is having a solid understanding of the scientific evidence proving the microbiological protectiveness of hand hygiene. [20] Most awareness campaigns rely heavily on the positive association between good knowledge, belief in the strong efficacy of hand hygiene practices, and compliance. [1] The Australian National Hand Hygiene Initiative recommends “evidence-based education on all aspects of hand hygiene in healthcare” for student HCWs, and for local initiatives to help HCWs “understand the evidence underlying the recommendation” to use ABHRs. [29]

The evidence is up-to-date and irrefutable, the studies too countless to ignore. Proper hand hygiene curtails HAI rates dramatically. [3,30-38] Yet, despite awareness campaigns and convenient online access to the major literature, HCWs (mostly in developed nations) still cite the lack of convincing evidence as their reason for non-compliance. [18,20] There are several common reasons for this. The evidence base does lack randomised controlled trials (RCTs) that are hospital-based and double-blinded. However, such studies are unfeasible; it is impossible to blind subjects from their own hand hygiene practices, implementing a control group would clearly be unethical to patients, and it is extremely difficult to simulate a realistic hospital working environment (the lack of which may confound results). [39] Nevertheless, ample community-based open RCTs and cluster trials have produced sufficiently convincing, high-quality results. [40-44] Another common objection blames ABHRs for increasing the incidence of Clostridium difficile-associated diseases. However, this has long been epidemiologically refuted. [1,32,45-49] Perhaps the deepest reason why it is not sufficient to simply educate HCWs about the evidence of the benefits to patients is this – being convinced about the self-protective efficacy of elective hand hygiene motivates many HCWs much more than knowing its patient-protective efficacy does. This attitude has been a recurrent finding across the various age groups, levels of employment experience and backgrounds of scientific training. [18,20] It may do well for awareness campaigns to place even greater emphasis on evidence demonstrating the self-protective nature of hand hygiene.

Subjective Norm

The second determinant of intention is subjective norm – the perception of how positively hand hygiene is endorsed by the people one respects within the workplace. [15,50] Staff members viewed as role models have the greatest impact on a HCW’s subjective norm. In 2009, Erasmus et al. conducted focus group studies on 65 nurses, consultants, junior house officers and medical students across five hospitals. Although their study was Netherlands-based, Erasmus et al.’s analysis of the social norm dynamics occurring within a hospital environment still offers key insights into the interplay between subjective norms and compliance for Australian HCWs. The study subjects most commonly identified doctors and experienced nurses, such as nurse managers, as their role models for clinical practice. [20] Another study also identified hospital administrators as role models. [18] At a busy neonatal intensive care unit, staff intention to practise good hand hygiene significantly increased when senior staff members’ opinions on the practice were perceived to be more favourable. [51] Thus, mass improvement could be found in encouraging the role models of each workplace to be thoughtful in their speech, ideas and habits, especially when around their colleagues.

Conversely, Erasmus et al. also highlighted how negative role models have the greatest power over medical students and junior nurses. [20] Perhaps this is because junior members of the healthcare team are frequently the most sensitive and feel that their behavioural control (explored in the next section) is being limited whenever subjective norms are defined by negative role models. [52] For example, in the study, many medical students believed they were unable to satisfactorily disinfect their hands between seeing patients on ward rounds because they would otherwise fall behind the rest of the team. Furthermore, in attempts to assimilate into their working environments, students admitted to imitating hospital staff, particularly doctors, without questioning their actions first. These findings demonstrate how the cycle of noncompliance could persist from one generation of role models to the next. [20] It is possible that the pressure on students to imitate senior HCWs could arise from the heuristic method of teaching common in medical schools, as well as the professional expectation that senior doctors mentor junior doctors. Being encouraged to learn from supervisors opportunistically, students often slip into the habit of accepting all advice unfiltered. Students may benefit from being regularly reminded of this pitfall by their clinical preceptors.

Peer HCWs, although not role models, may also degrade subjective norms in a hospital by contributing to its ‘culture’ of noncompliance. A negative subjective norm rooted in so widespread an acceptance of noncompliance can inform the elective beliefs and attitudes of less-experienced HCWs who may be more vulnerable to believing whatever they observe to be correct. [20] A cross-sectional survey of 2961 staff revealed that doctors and nurses experienced a strong direct association between intention and peer pressure from within their own respective professions. [53]

There have been many interventional attempts to nurture a culture of compliance. Many Australian hospitals have designated ‘hand hygiene champions’ as culture-enforcers and role models. Infection control teams design encouraging posters and use frequent audits with feedback to staff in attempts to stimulate inter-ward competitiveness and a sense of shared responsibility about compliance. However, a subculture of resistance to these strategies has emerged. [54] It is not uncommon to hear staff comment with an undertone of rebellion, “I wash my hands for extra long when the infection control police are around.”

Perceived Behavioural Control

The third independent determinant of intention, perceived behavioural control, describes one’s self-perceived likelihood of performing an action. [15,51] As part of a focus group study, Australian nurses identified the most common external influences on their control over hand hygiene performance. Many felt they lacked the relevant training in infection control. They reported that regular education programs and simple “Five Moments” charts placed around wards would avert any growing misconceptions about the need for disinfection after touching patient surroundings and remind them when they forget or get distracted. [55] During peaks in busyness or emergencies, HCWs have also indicated having no time to adhere to every moment of hand hygiene. Other times, when in the middle of performing certain tasks, they may feel unable to interrupt the activity to go clean their hands midway. Lastly, disapproval of hand hygiene by senior staff, mostly doctors, was discussed as a salient issue in focus group studies. All these factors were negatively associated with intention, measured by self-reported compliance. [6,20,53,55,56]

There is an important distinction between one’s perceived control, dependent on internal cognisance of how external factors affect one’s behaviour, and the actual ability of control they have been afforded by these external factors; the two commonly differ. [57] The link between actual ability and internal cognisance is self-efficacy. For an individual already familiar with infection control theory and technique, self-efficacy manifests as the confidence to actually practise what they have learnt when it is required. Alternatively, interventions seeking to increase self-efficacy of HCWs who find themselves constrained by time restrictions or the overbearing opinions of senior staff may involve improving HCW assertiveness, knowledge about hospital policy regarding patient safety, and practise in escalating concerns with other staff. [57] Training could involve testing a student’s capacity to remind a HCW to decontaminate their hands after observing them failing to do so while on the wards. [57]

Summary

Why is it that HCWs fail to clean their hands? Using the TPB framework, we explored the internal behavioural factors underlying noncompliance. HCWs’ beliefs about hand hygiene are informed by elements both at work and in the community. These perceptions define attitude, subjective norms and perceived behavioural control, which predict intention to clean one’s hands. With this understanding, it is imperative that interventions addressing compliance do not ignore these modifiable influences on HCWs. Table 1 is a summary of interventions suggested in this article. Addressing the behavioural psychology of hand hygiene might just be the final nail in the coffin for hand-transmitted HAIs.

45

Acknowledgements

None.

Conflict of interest

None declared.

Correspondence

R Aw-Yong: raelene.awyong@my.jcu.edu.au

References

[1] World Health Organisation. WHO Guidelines on Hand Hygiene in Health Care. Geneva: World Health Organisation; 2009.

[2] Martin-Madrazo C, Cañada-Dorado A, Salinero-Fort MA, Abanades-Herranz JC, Arnal-Selfa R, Garcia-Ferradal I et al. Effectiveness of a training programme to improve hand hygiene compliance in primary healthcare. BMC Pub Health. 2009;9:469.

[3]          Grayson ML, Jarvie LJ, Martin RL, Johnson PD, Jodoin ME, McMullan C et al. Significant reductions in methicillin-resistant Staphylococcus aureus bacteraemia and clinical isolates associated with a multisite, hand hygiene culture-change program and subsequent successful statewide roll-out. Med J Aust. 2008;188(11):633-40.

[4] Wisniewski MF, Kim S, Trick WE, Welbel SF, Weinstein RA, Chicago Antimicrobial Resistance Project. Effect of education on hand hygiene beliefs and practices: a 5-year program. Infect Control Hosp Epidemiol. 2007;28(1):88-91.

[5] Widmer AF, Conzelmann M, Tomic M, Frei R, Stranden AM. Introducing alcohol-based hand rub for hand hygiene: the critical need for training. Infect Control Hosp Epidemiol. 2007;28(1):50-4.

[6] Pittet D, Simon A, Hugonnet S, Pessoa-Silva CL, Sauvan V, Perneger TV. Hand hygiene among physicians: performance, beliefs, and perceptions. Ann Intern Med. 2004;141(1):1-8.

[7] Hand Hygiene Australia. National Data Period 1, 2015. Canberra: Hand Hygiene Australia; 2015. http://www.hha.org.au/LatestNationalData/national-data-2015.aspx.

[8] Ajzen I. From Intentions to Actions: A Theory of Planned Behaviour. In: Kuhl J, Beckmann J, eds. Action Control: From Cognition to Behaviour. Germany: Springer; 1985:11-39.

[9] Clayton DA, Griffith CJ. Efficacy of an extended theory of planned behaviour model for predicting caterers’ hand hygiene practices. Int J Environ Health Res. 2008;18(2):83-98.

[10] Gronhoj A, Bech-Larsen T, Chan K, Tsang L. Using Theory of Planned Behaviour to predict healthy eating among Danish adolescents. Health Educ. 2012;112(1):4-17.

[11] Rhodes RE, Blanchard CM, Matheson DH. A multicomponent model of the theory of planned behaviour. Br J Health Psychol. 2006;11(Pt1):119-37.

[12] Swanson V, Power KG. Initiation and continuation of breastfeeding: theory of planned behaviour. J Adv Nurs. 2005;50(3):272-82.

[13] Carmack C, Lewis-Moss R. Examining the Theory of Planned Behaviour Applied to Condom Use: The Effect-Indicator vs. Causal-Indicator Models. J Prim Prev. 2009;30(6):659-76.

[14] Ajzen I. The Theory of Planned Behaviour. Organ Behav Hum Decis Process. 1991;50:179-211.

[15] O’Boyle CA, Henly SJ, Larson E. Understanding adherence to hand hygiene recommendations: the theory of planned behaviour. Am J Infect Control. 2001;29(6):352-60.

[16] Huis A, van Achterberg T, de Bruin M, Grol R, Schoonhoven L, Hulscher M. A systematic review of hand hygiene improvement strategies: a behavioural approach. Implement Sci. 2012;7:92.

[17] Jenner EA, Fletcher BC, Watson P, Jones FA, Miller L, Scott GM. Discrepancy between self-reported and observed hand hygiene behaviour in healthcare professionals. J Hosp Infect. 2006;63(4):418-22.

[18] Whitby M, McLaws ML, Ross MW. Why healthcare workers don’t wash their hands: a behavioural explanation. Infect Control Hosp Epidemiol. 2006;27(5):484-92.

[19] Curtis V, Biran A, Deverell K, Hughes C, Bellamy K, Drasar B. Hygiene in the home: relating bugs and behaviour. Soc Sci Med. 2003;57(4):657-72.

[20] Erasmus V, Brouwer W, van Beeck EF, Oenema A, Daha T, Richardus JH. A qualitative exploration of reasons for poor hand hygiene among hospital workers: lack of positive role models and of convincing evidence that hand hygiene prevents cross-infection. Infect Control Hosp Epidemiol. 2009;30(5):415-9.

[21] Curtis V, Cairncross S. Effect of washing hands with soap on diarrhoea risk in the community: a systematic review. Lancet Infect Dis. 2003;3(5):275-81.

[22] Hygiene Matters: The SCA Hygiene Report 2008. Stockholm: Svenska Cellulosa Aktiebolaget; 2008. http://www.sca.com/Documents/en/Publications/SCA%20Hygiene%20matters_ENG.pdf?epslanguage=en.

[23] Women and Hygiene: The SCA hygiene matters report 2011. Stockholm: Svenska Cellulosa Aktiebolaget; 2010. http://www.sca.com/Documents/en/Publications/SCA-Hygiene-Matters-2011.pdf.

[24] Picheansathian W. A systematic review on the effectiveness of alcohol-based solutions for hand hygiene. Int J Nurs Pract. 2004;10(1):3-9.

[25] Kampf G, Wigger-Alberti W, Schoder V, Wilhelm KP. Emollients in a propanol-based hand rub can significantly decrease irritant contact dermatitis. Contact Derm. 2005;53(6):344-934.

[26] Graham M, Nixon R, Burrell LJ, Bolger C, Johnson PD, Grayson ML. Low rates of cutaneous adverse reactions to alcohol-based hand hygiene solution during prolonged use in a large teaching hospital. Antimicrob Agents Chemother. 2005;49(10):4404-5.

[27] Boyce JM, Pittet D. Guideline for Hand Hygiene in Health-Care Settings: Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Soc Healthcare Epidemiol Am/Assoc Prof Infect Control/Infect Dis Soc Am. MMWR Recomm Rep. 2002;51(RR-16):1-45, quiz CE1-4.

[28] Australian Bureau of Statistics. 2071.0 – Reflecting a Nation: Stories from the 2011 Census, 2012-2013. Canberra: Australian Bureau of Statistics; 2013. http://www.abs.gov.au/ausstats/abs@.nsf/mf/2071.0.

[29] Grayson ML, Russo P, Ryan K, Havers S, Heard K. Hand Hygiene Australia Manual 2013: 5 Moments for Hand Hygiene. Canberra: Hand Hygiene Australia; 2013.

[30] World Health Organisation. Evidence of hand hygiene to reduce transmission and infections by multi-drug resistant organisms in health-care settings. Geneva: World Health Organisation; 2014. http://www.who.int/gpsc/5may/MDRO_literature-review.pdf.

[31] Grayson ML, Russo PL, Cruickshank M, Bear JL, Gee CA, Hughes CF et al. Outcomes from the first 2 years of the Australian National Hand Hygiene Initiative. Med J Aust. 2011;195(10):615-9.

[32] McLaws ML, Pantle AC, Fitzpatrick KR, Hughes CF. Improvements in hand hygiene across New South Wales public hospitals: clean hands save lives, part III. Med J Aust. 2009;191(8 Suppl):S18-24.

[33] Allegranzi B, Pittet D. Role of hand hygiene in healthcare-associated infection prevention. J Hosp Infect. 2009;73(4):305-15.

[34] Roberts SA, Sieczkowski C, Campbell T, Balla G, Keenan A, Auckland District Health Board Hand Hygiene Steering and Working Groups. Implementing and sustaining a hand hygiene culture change programme at Auckland District Health Board. N Z Med J. 2012;125(1354):75-85.

[35] Jarlier V, Trystram D, Brun-Buisson C, Fournier S, Carbonne A, Marty L et al. Curbing methicillin-resistant Staphylococcus aureus in 38 French hospitals through a 15-year institutional control program. Arch Intern Med. 2010;170(6):552-9.

[36] Stone SP, Fuller C, Savage J, Cookson B, Hayward A, Cooper B et al. Evaluation of the national Cleanyourhands campaign to reduce Staphylococcus aureus bacteraemia and Clostridium difficile infection in hospitals in England and Wales by improved hand hygiene: four year, prospective, ecological, interrupted time series study. BMJ. 2012;344:e3005.

[37] Pittet D, Hugonnet S, Harbarth S, Mourouga P, Sauvan V, Touveneau S. Effectiveness of a hospital-wide programme to improve compliance with hand hygiene. Infection Control Programme. Lancet. 2000;356(9238):1307-12.

[38] Huang GK, Stewardson AJ, Grayson ML. Back to basics: hand hygiene and isolation. Curr Opin Infect Dis. 2014;27(4):379-89.

[39] Jumaa PA. Hand hygiene: simple and complex. Int J Infect Dis. 2005;9(1):3-14.

[40] Nicholson JA, Naeeni M, Hoptroff M, Matheson JR, Roberts AJ, Taylor D et al. An investigation of the effects of a hand washing intervention on health outcomes and school absence using a randomised trial in Indian urban communities. Trop Med Int Health. 2014;19(3):284-92.

[41] Suess T, Remschmidt C, Schink SB, Schweiger B, Nitsche A, Schroeder K et al. The role of facemasks and hand hygiene in the prevention of influenza transmission in households: results from a cluster randomised trial; Berlin, Germany, 2009-2011. BMC Infect Dis. 2012;12:26.

[42] Savolainen-Kopra C, Haapakoski J, Peltola PA, Ziegler T, Korpela T, Anttila P et al. Hand washing with soap and water together with behavioural recommendations prevents infections in common work environment: an open cluster-randomized trial. Trials. 2012;13:10.

[43] Hübner NO, Hübner C, Wodny M, Kampf G, Kramer A. Effectiveness of alcohol-based hand disinfectants in a public administration: impact on health and work performance related to acute respiratory symptoms and diarrhoea. BMC Infect Dis. 2010;10:250.

[44] Sandora TJ, Taveras EM, Shih MC Resnick EA, Lee GM, Ross-Degnan D et al. A randomized, controlled trial of a multifaceted intervention including alcohol-based hand sanitizer and hand-hygiene education to reduce illness transmission in the home. Pediatrics. 2005;116(3):587-94.

[45] Boyce JM, Ligi C, Kohan C, Dumigan D, Havill NL. Lack of association between the increased incidence of Clostridium difficile-associated disease and the increasing use of alcohol-based hand rubs. Infect Control Hosp Epidemiol. 2006;27(5):479-83.

[46] Vernaz N, Sax H, Pittet D, Bonnabry P, Schrenzel J, Harbarth S. Temporal effects of antibiotic use and hand rub consumption on the incidence of MRSA and Clostridium difficile. J Antimicrob Chemother. 2008;62(3):601-7.

[47] Kaier K, Hagist C, Frank U, Conrad A, Meyer E. Two time-series analyses of the impact of antibiotic consumption and alcohol-based hand disinfection on the incidences of nosocomial methicillin-resistant Staphylococcus aureus infection and Clostridium difficile infection. Infect Control Hosp Epidemiol. 2009;30(4):346-53.

[48] McDonald LC, Owings M, Jernigan DB. Clostridium difficile Infection in Patients Discharged from US Short-stay Hospitals, 1996–2003. Emerg Infect Dis. 2006;12(3):409-15.

[49] Archibald LK, Banerjee SN, Jarvis WR. Secular trends in hospital-acquired Clostridium difficile disease in the United States, 1987-2001. J Infect Dis. 2004;189(9):1585-9.

[50] Tai JW, Mok ES, Ching PT, Seto WH, Pittet D. Nurses and physicians’ perceptions of the importance and impact of healthcare-associated infections and hand hygiene: a multi-center exploratory study in Hong Kong. Infection. 2009;37(4):320-33.

[51] Pessoa-Silva CL, Posfay-Barbe K, Pfister R, Touveneau S, Perneger TV, Pittet D. Attitudes and perceptions toward hand hygiene among healthcare workers caring for critically ill neonates. Infect Control Hosp Epidemiol. 2005;26(3):305-11.

[52] Grube JW, Morgan M, McGree ST. Attitudes and normative beliefs as predictors of smoking intentions and behaviours: a test of three models. Br J Soc Psychol. 1986;25(Pt 2):81-93.

[53] Sax H, Uçkay I, Richet H, Allegranzi B, Pittet D. Determinants of good adherence to hand hygiene among healthcare workers who have extensive exposure to hand hygiene campaigns. Infect Control Hosp Epidemiol. 2007;28(11):1267-74.

[54] Tropea J, Clinical Epidemiology & Health Service Evaluation Unit Royal Melbourne Hospital. A national stakeholder review of Australian infection control programs: the scope of practice of the infection control professional (Final draft report). Sydney: Australian Commission on Safety and Quality in Healthcare; 2008.

[55] White KM, Jimmieson NL, Obst PL, Graves N, Barnett A, Cockshaw et al. Using a theory of planned behaviour framework to explore hand hygiene beliefs at the ‘5 critical moments’ among Australian hospital-based nurses. BMC Health Serv Res. 2015;15(59); doi: 10.1186/s12913-015-0718-2.

[56] Ajzen I. Attitudes, Personality, and Behaviour: Mapping social psychology. Berkshire, England: McGraw-Hill International; 2005.

[57] Van de Mortel T. Development of a questionnaire to assess healthcare students’ hand hygiene knowledge, beliefs and practices. Aust J Adv Nurs. 2009;26(3):9-16.

Categories
Feature Articles

So you want to be a haematologist?

Introduction42

Discussion surrounding specialties of preference is commonplace in medical school, across all levels of training. Some are attracted to the breadth of care afforded in general practice, the in-depth expertise of organ systems in physician specialties, or the hands-on experience with human anatomy in surgery. A few of us however, appreciate the opportunity to care for patients by the bedside, followed by investigating their bodily samples under the microscope in search of an answer to their problems.

Belonging to the last group, I present this article which summarises my elective term experiences in haematology at the Olivia Newton-John Cancer & Wellness Centre and the Guy’s Hospital. This, I hope, will shed some light on haematology as a potential field of interest for medical students – one that many of us consider ‘exotic’ and thus, perhaps, less pursued.

Haematology – what’s in a specialty?

Haematology is an integrated discipline that incorporates both clinical and laboratory skills to diagnose and treat diseases of the blood and blood-forming (haematopoietic) organs. [1] The blood’s cellular components include the red blood cells, white blood cells and platelets, which are derived from the bone marrow in steady-state conditions. Extra-medullary haemopoiesis in the liver and the spleen occurs in certain disease states, for example in marrow failure syndromes and haemoglobinopathies. In addition, the coagulation factors, which assist clotting, are also an important part of the haematological system. Principally, haematologists treat disorders which arise from derangement of any of these blood components – too high, too low or dysfunctional – as a result of diverse pathological processes, broadly classified as malignant or non-malignant. [2]

Clinical exposure and latest research

To set the scene, my first placement took place at the Olivia Newton-John Cancer & Wellness Centre in Melbourne. A new addition to the Austin Health complex in 2013, it is a comprehensive cancer centre which offers a holistic approach to patient care. On top of routine clinical care, the Olivia Newton-John Cancer & Wellness Centre provides a range of wellness therapies, such as music therapy, art therapy and massage. [3] Following a short vacation, I then set off to London, where I undertook my second placement at the Guy’s Hospital, a major teaching hospital affiliated with King’s College London. Located in Central London, this is the hospital where Thomas Hodgkin once worked. [4] I would like to share interesting current trends in clinical haematology I came across whilst on this placement.

At the Guy’s Hospital, I was privileged to work with the Myeloproliferative Neoplasms (MPN) Unit, an internationally renowned centre for the care of patients with MPN spectrum: polycythaemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (MF). The MPN are characterized by clonal proliferation of myeloid progenitor cells in the bone marrow and in many cases, liver and spleen. [2] The advent of rapid genome-wide sequencing has identified a number of important mutations responsible for these disorders, including mutations in the Janus kinase 2 (JAK2), the MPL proto-oncogene, thrombopoietin receptor (MPL), and most recently the calreticulin (CAL-R) genes. [5] A particularly important ‘newcomer’ for MPN treatment I encountered there was ruxolitinib, a JAK1/2 inhibitor, which has been licensed for MF since the landmark publication by Prof. Claire Harrison in 2012. [6] This paper demonstrates superior efficacy of ruxolitinib compared to conventional therapy (usually hydroxyurea), in improving splenomegaly and overall quality of life. In addition, there is some evidence that ruxolitinib may also improve survival in patients with MF, although this needs to be further investigated. [7] Witnessing patients’ experiences first hand in her MPN clinics was a fantastic experience; especially given the limited efficacy and increased complications experienced with hydroxyurea. [6] At the moment, the Guy’s Hospital and other centres of excellence in the UK and Europe are running further clinical trials assessing the use of ruxolitinib in PV, with promising results reported in a recent study. [8] With corroborative studies, it is anticipated that ruxolitinib will be incorporated into the standard of care for patients with PV as well.

On the other hand, I spent most of my placement time at the Olivia Newton-John Cancer & Wellness Centre on ward service. An important lesson I took away is the clinical care of serious infections in haematology patients. Febrile neutropenia is the most common and important infective issue suffered by up to 80% of neutropenic patients with haematological malignancies on chemotherapy. [9,10] Primary haematological disease, along with high-dose chemotherapy, results in profound neutropenia, putting patients at risk of invasive bacterial infections. Compounding this risk is chemotherapy-induced gastrointestinal damage, which allows for translocation of enteric bacteria into the blood, causing bloodstream infections. [11] In particular, bloodstream infections with the extended-spectrum beta-lactamase and the carbapenemase-producing Gram-negative bacteria pose significant issues as these pathogens are resistant to empirical therapy for febrile neutropenia (which is commonly a broad-spectrum cephalosporin-based regimen with an anti-pseudomonal cover). [12] Increased mortality risk with these multi-resistant organisms is related to delays in delivering appropriate antibiotic therapy. [13] Indeed, we observed one case of bloodstream infection caused by an extended-spectrum beta-lactamase producing Gram negative bacteria, in which the patient remained febrile after 48 hours of empirical therapy with piperacillin/tazobactam, prompting the switch to a carbapenem-based therapy, allowing an adequate antimicrobial cover (luckily the isolate did not harbor a carbapenemase-producing bacteria as well). Antimicrobial stewardship and adequate infection control measures are required to prevent further problems with multi-resistant organisms, which has been an initiative worldwide today, including in Australia. [14]

Reflections on the elective placements

An elective placement will not be complete without reflecting on what I have learnt whilst there to make me a better doctor in the future.

First, I have come to truly appreciate the importance of research in clinical medicine. Research, both laboratory-based and clinical, provides the essential foundation of what we know at present of diseases and their appropriate management. As an intern candidate sitting interviews in two months time, the way I view my research involvement has been affirmed – it is no longer merely a ‘selling point’ in my curriculum vitae, rather it is something I am truly proud of – it is a contribution to humanity which I certainly would like to keep up. Haematology, in particular, is a very active field of scientific enquiry. In both centres I attended, there are numerous clinical trials that are still actively recruiting patients at the time this article is written. In recent years, ‘targeted therapy’ and ‘immunotherapy’ have taken the centre stage and my experience with ruxolitinib described above is one example.

Secondly, good communication skills are crucial for best patient care, especially in haematology. In such a discipline with high throughput of novel, potentially superior therapy, at times quality of life may be neglected (unintentionally) for ‘overall survival’, which is often used as a measure of treatment success. A career in haematology hence requires the ability of not only to offer hope via new therapy, but also to limit further suffering by the same token. Taking the time to empathically listen to patients’ wishes is very important, along with careful considerations on the potential benefit and side effects of the therapy on offer.

The natural history of malignant haematological disorders often alternates between periods of remission and relapse – at which a new treatment modality is usually offered. However, it is not uncommon that these ‘salvage therapies’ are offered on a clinical trial basis, where there is an uncertainty of whether or not we are doing more good than harm. Numerous times I had observed careful, empathetic listening followed by the question ‘is this what you really want?’ which revealed the true desire of our patients – that they prefer to embrace the time that remains free of side effects (nausea and fatigue are common ones) and are able to treasure their loved ones with minimal medical interventions. In such cases, close liaison with palliative care services is crucial in ensuring that we always act in our patient’s best interest. Having learnt this firsthand observing the consultants I had worked with in my electives, I most certainly will remember to put my patients’ (true) wishes first in my future practice.

So you want to be a haematologist (in Australia)?

There are three training pathways available in the Australian system (Figure 1). I will briefly discuss the joint RACP/RCPA training pathway here as it is the most commonly chosen pathway, and was the only pathway the registrars I worked with had undertaken. [15]

43

Figure 1. Haematology Training Pathways in Australia. Haematology affords a wide range of career options and subspecialties depicted here are by no means exhaustive. Please refer to www.racp.edu.au and www.rcpa.edu.au for a comprehensive overview of these training pathways.

After completing their Basic Physician Training (BPT) program, candidates are eligible to apply for the joint RACP/RCPA accreditation in haematology. This involves the completion of four years of advanced training in haematology, usually comprised of two years each of clinical and laboratory training (minimum requirements of two years and one year in laboratory and clinical haematology training, respectively). [15]

In addition to the RACP written and clinical examinations taken in the final year of BPT, joint accreditation trainees are required to complete the RCPA haematology part I and part II pathology examinations after at least 18 months of accredited laboratory training. [15] The part I examination includes written, morphology, ‘wet’ and ‘dry’ practical examinations plus a viva, while the part II examination includes a dissertation and a viva. Hence, those considering haematology as a vocation should take this component of the training into consideration – there will be pathology exams!

Pathways that follow to ‘consultanthood’ vary, with many fledgling haematologists pursuing further training through fellowship appointments or a Doctor of Philosophy degree (PhD). As a result, haematology affords a wide range of career destinations and many subspecialisations (Figure 1). Those who choose to work as a clinical haematologist provides inpatient and outpatient care, whilst laboratory haematologists hold supervisory role in accredited laboratories. Finally, private practice is also very common in Haematology, allowing for flexibility in matching vocational aspirations with personal pursuits.

For a more comprehensive overview of these training programs, please refer to the RACP (www.racp.edu.au) and RCPA (www.rcpa.edu.au) websites.

In summary, haematology is an attractive specialty as in many cases the haematologist has the satisfaction of seeing a patient clinically, making a diagnosis by looking at his/her patient’s blood and finally, offering appropriate treatments. Aligned with a previously published British article by O’Connor and Townsend [16], I think we agree that Haematology is, definitely, a specialty worthy of consideration.

Acknowledgements

None.

Conflict of interest

None declared.

Correspondence

A Tedjaseputra: adityat@student.unimelb.edu.au

References

[1] Haematology – Advanced Training Curriculum – Adult Medicine Division/Paediatrics & Child Health Division. Sydney, New South Wales: The Royal Australasian College of Physicians; 2013.

[2] Hoffbrand AV, Moss PAH. Essential Haematology. 6 ed. Hoffbrand AV, Moss PAH, editors. West Sussex, UK: Wiley-Blackwell; 2011.

[3] Olivia Newton-John Cancer & Wellness Centre: About Us Melbourne, Australia: Austin Health; 2015 [cited 2015 19 March]. Available from: http://www.oliviaappeal.com/About-Us.aspx.

[4] Stone MJ. Thomas Hodgkin: medical immortal and uncompromising idealist. BUMC Proceedings. 2005;18:368-75.

[5] Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379-90.

[6] Harrison C, Kiladjian J-J, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V, et al. JAK Inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366(9):787-98.

[7] Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. Efficacy, safety, and survival with ruxolitinib in patients with myelofibrosis: results of a median 3-year follow-up of COMFORT-I. Haematologica. 2015;100(4):479-88.

[8] Vannucchi AM, Kiladjian JJ, Griesshammer M, Masszi T, Durrant S, Passamonti F, et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med. 2015;372(5):426-35.

[9] Lingaratnam S, Slavin MA, Koczwara B, Seymour JF, Szer J, Underhill C, et al. Introduction to the Australian consensus guidelines for the management of neutropenic fever in adult cancer patients, 2010/2011. Australian Consensus Guidelines 2011 Steering Committee. Intern Med J. 2011;41(1b):75-81.

[10] Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2011;52(4):e56-93.

[11] Blijlevens NM, Donnelly JP, De Pauw BE. Mucosal barrier injury: biology, pathology, clinical counterparts and consequences of intensive treatment for haematological malignancy: an overview. Bone Marrow Transplant. 2000;25(12):1269-78.

[12] Tam CS, O’Reilly M, Andresen D, Lingaratnam S, Kelly A, Burbury K, et al. Use of empiric antimicrobial therapy in neutropenic fever. Australian Consensus Guidelines 2011 Steering Committee. Intern Med J. 2011;41(1b):90-101.

[13] Mikulska M, Viscoli C, Orasch C, Livermore DM, Averbuch D, Cordonnier C, et al. Aetiology and resistance in bacteraemias among adult and paediatric haematology and cancer patients. J Infect. 2014;68(4):321-31.

[14] Gottlieb T, Nimmo GR. Antibiotic resistance is an emerging threat to public health: an urgent call to action at the Antimicrobial Resistance Summit 2011. Medical Journal of Australia. 2011;194(6):281-3.

[15] Advanced Training in Haematology Sydney, New South Wales, Australia: The Royal Australasian College of Physicians; 2015 [cited 2015 April 25].

[16] O’Connor D, Townsend W. A career in haematology. [Internet]. London: British Medical Journal; 30 Dec 2009. [cited 2015 31 May]. Available from: http://careers.bmj.com/careers/advice/view-article.html?id=20000625#

Categories
Feature Articles

Medical humanities and narrative medicine

Medicine is both an art and a science. While modern medical training teaches the scientific and technical aspects of medicine well, the humane aspects of medical education remain relatively neglected at university level in Australia. “Medical humanities” and “narrative medicine” have been proposed as solutions to correct this imbalance. The inter-disciplinary field of “medical humanities” brings the perspectives of academic disciplines within the humanities to bear on medical practice. “Narrative medicine” teaches us how to hear our patients’ stories and how to respond to
them. These approaches provide crucial opportunities to develop attention to narrative, critical thinking and empathy, and thus to deploy the scientific tools of medicine more wisely.

“The art of tending to the sick is as old as humanity itself.”

 ~ Goldman Cecil’s Medicine [1]

41The practice of medicine is both an art and a science. Both aspects require due attention, but throughout my
university medical training it always seemed clear that scientific and technical topics were considered more important. After all, they received the majority of attention in the curriculum, and were more thoroughly examined. Important topics such as bioethics, social determinants of health, and the history and philosophy of medicine were balanced precariously at the periphery of our studies or even absent from the core curriculum.

Modern medical training emphasizes the scientific, technical and practical. Although patient communication, empathy and professionalism are rightfully given prominent places in modern medical school curricula, these are approached in typically pragmatic fashion – for example, how might one convey the impression of interest to a patient? We learn how to sit, how often to nod, when to make eye contact, and what we might say to appear to be listening. The evidence of my patient communication tutorials is scribbled in the margin of my first year textbook: “I see …”, “please go on …”, and “mm-mm …”. We learn this by rote, like everything else. This is an excellent place to start. But why bother at all? Mostly, we talk in terms of establishing rapport, taking better medical histories and improving the end results for our patients. However we never discussed the bigger questions that underlie all this effort to appear caring, for example, how to stimulate and sustain genuine interest in the endless stream of people we will meet as patients, let alone why we seek to relieve suffering or value human life at all.

From my own experience as a student, peer reviewing reflective essays or participating in tutorial discussions, the result of this heavily unbalanced emphasis is that medical students think no more subtly about important ethical issues in medicine than the typically hackneyed discussions one reads in the newspapers. This is despite our experiences with doctors and patients everyday in clinic and hospitals, for whom these are not abstract issues. For example, when discussing dilemmas encountered by doctors who are religious, someone may always be relied upon to pipe up with the peculiar remark that doctors ought to leave their personal values at home and not bring them to work – as if the doctor with no values was anything other than monstrous to contemplate. Why aren’t we able to transform this abundance of clinical experiences into better thinking on “big” questions? This mediocrity in critical thinking and imagination is dangerous for both our future patients and ourselves. However, the issue is larger than simply a lack of time for bioethics in the curriculum. The loss of space in the curriculum for this endeavor is but one manifestation of the lack of importance accorded to the humanities as a whole in medical training.

“Medical humanities” and “narrative medicine” have proposed themselves as solutions to this lack of the humane in modern medicine, to balance its increasing focus on the reductionist and scientifically technical. [2-3] Here I address the question of what it means to recover the sense of our profession as a humane art, especially via narrative medicine.

What are the medical humanities and narrative medicine?

Training in narrative medicine and medical humanities now forms part of the core curriculum at more than half of all North American medical schools. [4] However, despite the considerable influence of these fields in Europe and America, the concepts remain little known in Australia. “Medical humanities” refers to the interdisciplinary fields created when the perspectives of the humanities, social sciences and the arts, such as literature, history, music, languages, theology and fine art are brought to bear on medical practice and other areas relevant to healthcare. [5]

“Narrative medicine” in turn belongs within the wider field of the medical humanities. It is more than simply the observation that patients and their illnesses have stories, but this simple statement is where it all begins. The field of narrative medicine grew out of the work of physician Rita Charon who formally defined “narrative medicine” as medicine practised with “narrative competence”, that is, “competence to recognize, interpret, and be moved to action by the predicaments of others”. [6] Elsewhere, Charon describes narrative medicine more simply as “medicine practised by someone who knows what to do with stories”. [7] Training of medical professionals in this field teaches the application of formal literary theory and creative writing skills to the situations and interactions commonly encountered in medicine, as well as various interpersonal skills. To this end, the narrative medicine program directed by Charon at Columbia University trains participants in “close reading, attentive listening, reflective writing, and bearing witness to suffering”. [7]

One way of understanding about how to “do” narrative medicine is conceived in terms of three “movements” – attention, representation and affiliation. [7] Attention refers to the skill, when in the presence of our patients, of absorbing as much as possible about their condition. We recognize this as what we do during the observation phase of physical examination, for example. Representation refers to the act of writing about patients and our clinical experiences, “taking chaotic or formless experiences and conferring form”, for example as prose or poetry, a piece of written dialogue, or even as an obituary. This process creates meaning from our experiences. Finally, affiliation refers to “authentic … connections between doctor and patient”.

First movement: attention

Observation is the first step in any medical examination, and all-too easily overlooked when one is learning. All medical students soon develop some favourite trick for overacting this step during OSCEs, to impress our keen skills of observation upon the examiners. But how is one really to develop this skill? The obvious answer is by practice and experience with observation of real patients on the wards – learning to see the walking aids, asthma puffers, sputum containers, hearing aids and every other manner of salient item in the jumble of medical equipment and personal items at the patient’s bedside.

However, it is also possible to practice the skills required for observation in medical contexts in other settings, such as art galleries and museums. This approach was developed at U.S. medical schools, to teach skills such as objective observation, communication, disagreeing respectfully with peers and managing ambiguity. At the University of Melbourne, a method first developed at Harvard University (“Training the Eye”) is being used at the university’s Ian Potter art gallery for improving the observation skills of medical and dental students. [8] This program is based on the hypothesis that the process of understanding a complex, narrative-based painting requires many of the same skills as required for medical diagnosis. Access to this training is not routine for medical students, but can be sought out in elective sessions at the medical school’s annual student conference. In one such session, we used the wonderfully intriguing painting “Bushrangers”, painted by William Strutt in 1852. It is not immediately clear that the painting involves a highway robbery in what is now downtown St Kilda in Melbourne; drawing this inference requires deliberate searching through the painting’s details and debate about the significance of aspects of the painting with others. This approach has been shown substantially to improve the observation skills of medical students. [9] It is useful not only for observing our patients, but for a variety of other situations, such as understanding medical imaging and communicating our findings to colleagues and patients.

Second movement: representation

A crucial aspect of narrative medicine is learning to write about one’s practice and patients. Opportunities to develop this skill begin during medical school with reflective writing exercises about our clinical experiences and patient encounters. Another way to improve one’s own writing, apart from regular practice through reflective writing, is to read published examples of this kind of writing, of which endless excellent examples by both doctors and patients are available.

The genres of narrative medicine have been classified in various ways. One simple classification recognizes four different genres. [10] Firstly, there are the classic illness narratives that patients write about being sick, and which might include surrounding circumstances explaining how they were diagnosed, how they were treated, how they coped and the impact it had on them and their families.  An excellent, recent Australian contribution to this genre is Myfanwy and Donald Horne’s experience of Donald’s palliative care for chronic obstructive pulmonary disease (COPD), and the aftermath, chronicled in, “Dying: a memoir”. [11] Helen Garner’s “Spare Room” is an interesting Australian variation on the patient memoir, written from the perspective of a concerned friend. [12] “The diving bell and the butterfly”, Jean-Dominique Bauby’s compelling memoir of locked-in syndrome, is a classic in the genre. [13]

Secondly, many doctors write about their experiences of caring for their patients. Many will be familiar with the thoughtful writing of the Melbourne-based oncologist, Ranjana Srivastava, both in her regular newspaper column and her books, such as “Tell me the truth: conversations with my patients about life and death.” [14] The delightful books of Oliver Sacks, detailing the curious cases he encountered in his long practice as a neurologist, such as “The man who mistook his wife for a hat” also belong within this genre. [15] “The hospital by the river: a story of hope” by Catherine Hamlin about establishing the Ethiopian fistula hospital with her husband is a must-read for Australian medical students [16]; I found a copy on the midwives’ shelves during my obstetrics term and read it late at night between calls to labour suite. There are memoirs at all level of practice; the notorious memoir of life as a junior doctor in an American hospital, “House of God”, is by now legendary, along with its questionable additions to the medical vocabulary. [17]

Thirdly, there are doctor-patient narratives. These are narratives which show how not only the patient’s perspective on their illness, but also how their experience of illness was affected by the interaction with their doctor. These make us aware of how our reactions to patients and explanations of their symptoms can affect a patient’s understanding and experience of their illness. These narratives form in the interplay between doctor and patient in the taking a history, and in forming a diagnosis. Both the doctor and patient will begin to form stories about the illness in this process, which will necessarily be changed by the therapeutic encounter. This might be observed, for instance, when a newly diagnosed patient commonly asks whether anything might have been done to prevent their illness – did they do something to cause it – are they somehow to blame?

Lastly, we need to be aware of meta-narratives, which are the grand, over-arching stories our societies and cultures tell about illness and health, and which provide a framework within which we conceive and construct our own stories. A classic work in this area is Susan Sontag’s seminal “Illness as metaphor”, which examines the power of metaphor and myth in cancer, and was written during her own experience (we will not say “battle”) with cancer. [18] Arthur Frank’s “The Wounded Storyteller” is likewise a seminal text, as a collection of essays discussing the roles and limitations of different categories of illness narratives, and written in light of the author’s own experience of serious illness. [19] Jonathon Miller, although understandably better known for his influential stage production of Gilbert and Sullivan’s The Mikado starring an operetta-singing Eric Idle as Ko-Ko, was also a neurologist. His multi-series documentary and book “The body in question” is another influential endeavor in the genre of medical metanarrative, dealing as it does with metaphors of illness, and cultural ideas about the body. [20]

Third movement: affiliation

How then does one “do” narrative medicine in daily medical practice? The most important element in building the required therapeutic affiliation with patients in narrative medicine is “a specific openness to towards patients and their narratives”. [10] Charon notes that when she began to try this approach with her own patients, she asked only one question during the initial consultation: “I have to learn as much as I can about [your] health. Could you tell me whatever you think I should know about your situation?”. [21] While most of us would worry about the extra time it would take in a consultation if patients were allowed to speak without direction, one study showed that two minutes was long enough in General Practice for 80% of patients to explain all of their concerns, if the doctor was trained in active listening and even if the patients had complex medical concerns. [10] Nevertheless, ensuring that a consultation with a patient “meets both narrative and normative requirements” is unquestionably difficult and requires training and daily practice. [22]

Proponents of narrative medicine argue that literature is an important way to develop the narrative mindset for medical practice of this kind. The touted benefits to doctors of reading “good books” include that reading offers a wider experience of life than one may encounter in the everyday of a single lifetime. [23] The narrative perspective, it is claimed, also has the potential to develop the imagination on which empathy depends, by crossing barriers into the inner lives of others in a way that is not possible in real life, even with the unique insights into others’ lives provided by medical practice. [23] It is also said that literature can also refine moral perception, and teach one to manage with ambiguity and paradox. [24] However, despite these optimistic expectations, medical students have proven resistant to the projected benefits of reading for this purpose. The obviously frustrated authors of one study document students refusing to participate in their carefully prepared class (“the literature we selected would have made Tolstoy proud”). They had hoped to discuss passages from novels covering themes such as illness, family violence race, gender, social class and sexual identity. [25] The students responded in a way that will be familiar to any of us who have attended classes on topics commonly deemed by the student body to be “fluffy” – questioning the basis of the class, not taking it seriously, treating presenters with disrespect and even not attending the class. Some of this resistance is laudable – the impatience of the practically-minded for weasel words and time wasting, and a weariness with endless jostling to advertise various medico-political agenda within our curriculum. However, it is also likely that the resistance arose, as the authors suggested, from a refusal to persist with uncomfortable topics which also ask a group of students who see themselves as triumphant meritocrats to reflect on the undeserved social advantages that have enabled them to study medicine at all.

Conclusion

Much has been claimed for the benefits of narrative medicine. However, writers in the field caution against over emphasizing the artificial dichotomies of humanities versus the sciences, the subjective versus the objective, the clinical and reductionist versus the human and holistic. [26,27] Competent medical practice necessarily requires compassion and imagination, and cannot avoid “big” questions such as the nature and meaning of pain, suffering and death. However, a doctor who is able to respond usefully to these fundamental questions requires training and skills beyond the merely technical and scientific. Other potential benefits suggested for this approach include the preservation of empathy throughout medical training, reduced doctor burnout, exhaustion and disillusionment, and better outcomes for our patients. [4]

How can we learn narrative medicine? At medical school, this might be about making time to read widely and explicitly resisting the pressures towards reductionism and technical focus. Another important way to preserve and develop narrative sensibilities is by writing about our own clinical experiences and patients. An obvious example in this respect is simply to take reflective writing opportunities seriously, and to expect high standards of writing from others when asked to give peer feedback. For junior doctors, opportunities for joining Balint groups at hospitals or during GP training are also becoming more widespread. These small groups meet to present and discuss cases from members’ own practice, with focus on narrative, the doctor-patient relationship, and self-reflection. [28] However, the options in Australia for formal academic training in the humanities, as a medical student or doctor, are limited. The only explicit university program in medical humanities in Australia is at the University of Sydney, which offers “health humanities” as a specialization in the Masters or Graduate Diploma of Bioethics. [29] Another option is attendance at shorter workshops that overseas institutions offer from time to time, and which we might seek out during study leave. The most well-established of these are those offered at mid-year at the University of Columbia Medical Center in the U.S. [30]

Medicine practiced without attention to the humane has the potential to harm both our patients and ourselves. While science provides us with safe, effective tools to deploy in medical practice, the humanities teach us how to use them wisely. [31] Currently, university medical training focuses on the former, with limited opportunities to develop the attention to narrative, critical thinking and empathy which help us to develop wisdom in response to clinical experience. Oliver Sacks summaries this aptly, “With the rise of technological medicine and all its wonders, it is equally important to preserve the personal narrative, to see every patient as a unique being with his own history and strategies for adapting and surviving. Though the technical terms may evolve and change, the phenomenology of human sickness and health remains fairly constant …” [15]

References

[1] Goldman L, Schafer AI. Cecil Medicine: Elsevier Health Sciences; 2011. p2.

[2] Hooker C. The medical humanities: a brief introduction. Aust Fam Physician. 2008;37(5):369-70.

[3] Charon R. Narrative medicine – A model for empathy, reflection, profession, and trust. JAMA. 2001;286(15):1897-902.

[4] Divinsky M. Stories for life: introduction to narrative medicine. Can Fam Physician. 2007;53(2):203-5, 9-11.

[5] Gordon J. Medical humanities: to cure sometimes, to relieve often, to comfort always. Med. J. Aust.. 2005;182(1):5-8.

[6] Charon R. Narrative medicine: Form, function, and ethics. Ann. Intern. Med. 2001;134(1):83-7.

[7] Charon R. What to do with stories – The sciences of narrative medicine. Can Fam Physician. 2007;53:1265-7.

[8] Gaunt H. Medicine and the arts: Using visual art to develop observation skills and empathy in medical and dental students. University of Melbourne Collections. December 2012(11).

[9] Naghshineh S, Hafler JP, Miller AR, Blanco MA, Lipsitz SR, Dubroff RP, et al. Formal art observation training improves medical students’ visual diagnostic skills. J Gen Intern Med. 2008;23(7):991-7.

[10] Kalitzkus V, Matthiessen PF. Narrative-based medicine: potential, pitfalls, and practice. Perm J. 2009;13(1):80-6.

[11] Horne D, Horne M. Dying: A memoir. Melbourne: Penguin; 2007. 276 p.

[12] Garner H. The Spare Room: A Novel. New York: Henry Holt and Company; 2009. 192 pp.

[13] Bauby JD. The Diving Bell and the Butterfly. New York: Random House; 1997. 131 p.

[14] Srivastava R. Tell Me the Truth: Conversations with my Patients about Life and Death. Melbourne: Penguin; 2010. 320 p.

[15] Sacks O. The Man Who Mistook His Wife For A Hat: And Other Clinical Tales. New York: Simon & Schuster; 1998. 243 p.

[16]]    Hamlin C, Little J. The Hospital by the River. Sydney: Pan Macmillan; 2008. 308 p.

[17] Shem S. The House of God: A Novel. New York: R. Marek Publishers; 1978. 382 p.

[18] Sontag S. Illness as Metaphor: Farrar, Straus and Giroux; 1978. 87 p.

[19] Frank AJ. The Wounded Storyteller: Body, Illness, and Ethics. 2nd ed. Chicago, U.S.: University of Chicago Press; 2013.

[20] Miller J. The body in question. London: Jonathan Cape; 1978. 352 p.

[21] Charon R. Narrative and medicine. N. Engl. J. Med.. 2004;350(9):862-4.

[22] Launer J. New stories for old: Narrative-based primary care in Great Britain. Fam Syst Health. 2006;24(3):336-44.

[23] Bolton G. Medicine and literature: writing and reading. J Eval Clin Pract. 2005;11(2):171-9.

[24] Ahlzen R. The doctor and the literary text–potentials and pitfalls. Med Health Care Philos. 2002;5(2):147-55.

[25] Wear D, Aultman JM. The limits of narrative: medical student resistance to confronting inequality and oppression in literature and beyond. Med Educ. 2005;39(10):1056-65.

[26] Charon R, Wyer P. Narrative evidence based medicine. Lancet. 2008;371(9609):296-7.

[27] Gordon J. Arts and humanities. Med Educ. 2005;39(10):976-7.

[28] Benson J, Magraith K. Compassion fatigue and burnout: the role of Balint groups. Aust Fam Physician. 2005;34(6):497-8.

[29] The University of Sydney. sydney.edu.au/medicine/velim/pgcoursework/medicalhumanites.php 2002-2015 [cited 15 May 2015].

[30] Columbia University Medical Center. www.narrativemedicine.org/workshops.html 2015 [cited 15 May 2015].

[31] Gordon JJ. Humanising doctors: what can the medical humanities offer? Med. J. Aust. 2008;189(8):420-1.

Categories
Feature Articles

Medical futility: The struggle to define an ancient concept in a modern clinical context

At face value the word futility is deceptively simple, inviting synonyms such as useless, pointless, and ineffective. [1] The concept is not new, with Hippocrates espousing the importance of avoiding futile treatment measures over two thousand years ago: “Refuse to treat those who are over-mastered by their disease, realising that in such cases medicine is powerless.” [2] It was not until the 1980s that the term “medical futility” began to receive significant attention in the medical literature. [3,4] Despite several decades of debate and hundreds of articles dedicated to the subject, the concept of medical futility remains ambiguous. [4,5] Several competing concepts and definitions have been proposed, however each of these has been subject to criticism and has ultimately failed to produce significant agreement. Increasingly, the philosophical definition of futility is proving inconsequential when applied in a clinical context. Ongoing attempts to reach a consensus distract from more significant practical issues. These include resource rationing and how best to manage conflict over patient demands for treatments that healthcare providers deem to be medically inappropriate. [5,6]

Back to basics40

The Oxford Dictionary definition of futility is seemingly straightforward, defining futile as “incapable of producing any useful result; pointless”. [7] Deeper consideration reveals that not only is futility by this account difficult to quantify with certainty, it is also extremely subjective and value-laden. [8] Given the capacity for humans to occasionally defy medical odds it is almost impossible to declare with complete confidence that a treatment is “incapable of producing any useful result”. Ewer proposes that “in seeking a universal definition of medical futility, we may be drawing an arbitrary line in a continuum; we seek the comfortable position of declaring futility exists or does not, and we cannot always make that determination”. [9] The inability to reach a universal understanding of futility despite several decades of discussion in the literature supports this assertion that futility definitions are inherently arbitrary.

Further complicating the debate is the lack of consensus as to which group of patients the concept of futility applies. Theoretically, futile treatment could be used to describe any intervention that is performed without being medically indicated. [3] Overall however, the medical literature generally considers a more limited application of futility as it applies to life-sustaining treatments. [3] Some authors argue that defining futility in the context of end-of-life measures unnecessarily clouds the debate with emotion and is partly responsible for the confusion surrounding its meaning. [10]

Paternalistic origins

While the definition of futility is often cited as the point of contention, the central issue in the futility debate is actually the authority and role of doctors in making decisions to withhold or withdraw treatment. [3] Original attempts to define medical futility aimed to provide a clear legal and ethical framework within which doctors could reasonably deny or withdraw medical therapy based solely on clinical indications for treatment, irrespective of patient preferences. [3,6] Doctors were given the power to make abstention decisions over the objections of competent patients based on their medical expertise. Unsurprisingly, this concept of medical futility drew heavy criticism on the basis that it invites medical paternalism and the imposition of doctors’ personal values on patients. [3]

Physiological futility

The concept of futility was subsequently revised to that of “physiological futility”. According to this definition, a futile treatment is one that is incapable of achieving its intended biological aim. [4,6] The medical expertise of doctors was still given central importance, but this definition aimed to remove subjective quality-of-life judgements from the decision-making process and provide an objective account of medical futility. [3,11] Prognostic scoring systems were touted as a means of substantiating futility assessments through empirical data. [3] The physiological futility model also drew criticism as it failed to account for individual deviations in predicted outcome (i.e. the patients that “defy the odds”). [3] Furthermore, subjective assessment still exists, as data supplied by prognostic scoring systems requires interpretation and integration with subjective evaluations to be applied to the individual patient. [3]

Quantitative and qualitative futility

Contributions by Schneiderman et al. in the early 1990s introduced the concepts of qualitative and quantitative futility into the debate. Schneiderman quantified a level at which abstention decisions could be justified, proposing that an intervention is quantitatively futile when: “physicians conclude (either through personal experience, experiences shared with colleagues or consideration of reported empiric data) that in the last 100 cases, a medical treatment has been useless.” [12] Opposition to the quantitative futility definition (and indeed any definition based on prognostic scoring systems) centres on the idea that such definitions create “self-fulfilling prophecies”. [6] If life-sustaining treatments are denied because of an anticipated high probability of death, the subsequent observed mortality rate will be artificially increased. [6]

Schneiderman went on to state that “any treatment that merely preserves permanent unconsciousness or that fails to end total dependence on intensive medical care should be regarded as nonbeneficial and, therefore, futile”. [12] In proposing a quality-of-life based minimum standard against which futility could be measured the authors present the concept of qualitative futility as an alternative to quantitative futility. [3,4]

Procedural approach to futility

The procedural approach to futility moves away from semantics, focussing instead on the processes by which ethical arguments are addressed. This emphasis on procedure over terminology emerged as it became apparent that reaching consensus on a futility definition was unrealistic. [3,4] The procedural approach promotes the establishment of processes and strategies aimed at minimising conflicts and resolving disputes related to medical futility. The utility of this method led to its adoption by a number of hospitals and endorsement by the American Medical Association [4]: “Since definitions of futile care are value laden, universal consensus on futile care is unlikely to be achieved. Rather, the American Medical Association Council on Ethical and Judicial Affairs recommends a process-based approach to futility determinations.” [4,13] Also known as the “due process approach”, this model avoids defining criteria for denying or withdrawing treatment. [6] Instead disputes around delivery of medically futile treatment are generally referred to a third party or ethics committee. [6] Unsurprisingly, this definition has also come under scrutiny for its inherent bias, as these committees are traditionally largely comprised of medical practitioners. [6]

Futility vs. rationing

Of increasing importance in the futility debate is the distinction between the terms futility and rationing. Futility questions whether a proposed treatment will work, whereas rationing questions the cost-versus-benefit of an intervention. [4] In the current health context of advancing treatment modalities and finite funding, attention is shifting away from defining futility and towards specifying a reasonable and appropriate level of care. [9]

The language of futility is also changing to reflect this shift in values towards a rationing emphasis. The Australian Medical Association supports the need to evaluate costs and benefits, stating: “Treatment is futile when it is no longer providing a benefit to a patient, or the burdens of providing the treatment outweigh the benefits.” [14] Wilkinson et al. argue propose that “medically inappropriate” is a preferable term to futility as it makes clear the fact that it is a value judgement made by doctors and avoids the “pseudo-objectivity” conveyed by the word “futile”. [6] This explanation, coupled with the procedural approach’s emphasis on communication and negotiation to resolve disputes, arguably offers the most useful account of medical futility in the current health context.

A suggested approach to futility for clinicians

In the absence of a medical consensus on the definition of futility, McCabe and Storm suggest contemplating the following questions when deciding if a treatment is futile:

  1. The goal of the treatment in question
  2. The likelihood of achieving treatment goal(s)
  3. The risks, costs and benefits to the patient of pursing the intervention, compared with the alternatives
  4. The individual needs of the patient [15]

When doctors and patients disagree about treatment futility, the American Medical Association promotes the following seven steps to resolve the conflict:

  1. Earnest attempts should be made in advance to deliberate over and negotiate prior understandings between patient, proxy, and physician on what constitutes futile care for the patient, and what falls within acceptable limits for the physician, family, and possibly also the institution.
  2. Joint decision-making should occur between patient or proxy and physician to the maximum extent possible.
  3. Attempts should be made to negotiate disagreements if they arise, and to reach resolution within all parties’ acceptable limits, with the assistance of consultants as appropriate.
  4. Involvement of an institutional committee such as the ethics committee should be requested if disagreements are irresolvable.
  5. If the institutional review supports the patient’s position and the physician remains unpersuaded, transfer of care to another physician within the institution may be arranged.
  6. If the process supports the physician’s position and the patient/proxy remains unpersuaded, transfer to another institution may be sought and, if done, should be supported by the transferring and receiving institution.
  7. If transfer is not possible, the intervention need not be offered.  [16]

Conclusion

Ultimately the definition of futility has little relevance in the current healthcare climate. With continued advances in the ability of expensive medical interventions to keep people alive, a distinction must be drawn between what can be done and what should be done. Whether it is philosophically agreeable or not, futility and rationing are inextricably linked in a practical medical sense. In the current health context, the pertinent issue is now how best to manage requests by the public for medically inappropriate treatment. Successful strategies are those that minimise conflict, promote dialogue, and shared goal setting while supporting patients and their families when the limits of care have been reached.

Acknowledgements

None.

Conflict of interest

None declared.

Correspondence

K Haworth: kobihaworth@gmail.com

References

[1] Roget’s 21st century thesaurus. [Internet]. 3rd ed. Philip Lief Group; 2009. Futile. [cited 2012 Jul 13]. Available from: http://thesaurus.com/browse/futile

[2] Whitmer M, Hurst S, Prins M, Shepard K, McVey D. Medical futility: a paradigm as old as Hippocrates. Dimens Crit Care Nurs. 2009;28(2):67-71.

[3] Moratti S. The development of “medical futility”: towards a procedural approach based on the role of the medical profession. J Med Ethics. 2009;35(6):369-72.

[4] Burns JP, Truog RD. Futility: a concept in evolution. Chest. 2007;132(6):1987-93.

[5] Trotochaud K. CE: “Medically futile” treatments require more than going to court. Case Manager. 2006;17(3):60-4.

[6] Wilkinson DJC, Savulescu J. Knowing when to stop: futility in the ICU. Curr Opin Anaesthesiol. 2011;24(2):160-5.

[7] Oxford dictionaries. [Internet]. Oxford University Press; 2010. Futile. [cited 2012 Jul 13]. Available from: http://oxforddictionaries.com/definition/english/futile

[8] Nelson SN. “Do everything!”: encountering “futility” in medical practice. Ethics Med. 2003;19(2):103-13.

[9] Ewer MS. The definition of medical futility: are we trying to define the wrong term? Heart Lung. 2001;30(1):3-4.

[10] Chwang E. Futility clarified. J Law Med Ethics. 2009;37(3):487-95.

[11] Youngner SJ. Who defines futility? JAMA. 1988;260(14):2094-5.

[12] Schneiderman LJ, Jecker NS, Jonsen AR. Medical futility: its meaning and ethical implications. Ann Intern Med. 1990;112(12):949-54.

[13] Council of Ethical and Judicial Affairs. Medical futility in end-of-life-care. JAMA. 1999;281:937-41.

[14] Australian Medical Association. Position statement on the role of the medical practitioner in end of life care. Australian Medical Association Ltd; 2007.

[15] McCabe MS, Storm C. When doctors and patients disagree about medical futility. J Oncol Pract. 2008;4(4):207-9.

[16] American Medical Association: AMA Opinion 2.037: medical futility in end-of-life care [Internet]. 1997 [cited 2015 Apr 11]. Available from: http://www.ama-assn.org/ama/pub/physician-resources/medical-ethics/code-medical-ethics/opinion2037.page?

Categories
Feature Articles

Epidural analgesia during labour: Friend or foe? A reflection on medicine, midwives and Miranda Kerr

Choosing a method of pain relief for childbirth is an extremely personal, and often well-considered, decision. For many women, childbirth is the most painful experience they will ever encounter. It is no surprise that a number of pharmacological and non-pharmacological methods have been developed to help manage this painful and sometimes traumatic experience. In Western cultures, epidural analgesia (EA), as well as a number of other methods, is widely used, and its benefits (and risks) are well documented. [1-3] Despite the generally positive evidence base, many women choose not to use EA during their labour. [1, 4, 5] Clearly, there are other factors that influence their choice of pain relief (or lack thereof). Personal attitudes towards the acceptability of labour pain and fear of the process are key, but outside influences can be significant. [1, 5, 6] Those around her – her doctors and/or midwives, her family and friends – will almost certainly have shaped her attitude. However, public pressure generated by celebrities such as Miranda Kerr may influence a woman’s decision more than we realise. In the age of social media, where opinions are abundant and conflicting, women may be more confused than ever: is an epidural a friend or a foe?

There are a number of methods available for managing pain during the labour process. In discussing these options it often becomes a balancing act between what the woman considers to be an acceptable level of pain, with an acceptable level of risk – a highly personal decision that relies on a woman being able to adequately understand the risks and consequences. Options for analgesia may be non-pharmacological, such as massage, breathing exercises and transcutaneous electrical nerve stimulation (TENS), which have limited evidence of efficacy but appear to improve satisfaction with the childbirth experience (compared to placebo). [2, 3] Pharmacological choices include:

  • Inhalation agents (i.e. nitrous oxide), which relieve pain compared with placebo but are associated with nausea, vomiting and dizziness [2, 3]
  • Systemic opioids, which are less effective than regional analgesics and frequently cause nausea and sedation [2, 7]
  • Local anaesthetic nerve blocks, which are especially useful for instrumental delivery and episiotomy (often in conjunction with EA) [8]
  • Regional analgesia, including EA, spinal anaesthesia, and combined spinal-epidural anaesthesia (CSE)

EA is widely used for pain relief in labour and involves injection of a local anaesthetic (such as bupivacaine) into the epidural space. [2] It is typically given with an opioid such as fentanyl to limit the amount of local anaesthetic required for efficacy. This also allows the woman greater ability to bear down and push during the second stage of labour. EA effectively relieves pain (compared to opioids or placebo) but does increase the risk of instrumental delivery and caesarean section for fetal distress, and may prolong the second stage of labour by up to two hours. [2, 3, 9, 10] Other potential adverse effects include hypotension, motor blockade, fever and urinary retention (requiring an indwelling urinary catheter). [3, 7] Fear of EA side effects has been noted as a key predictor as to whether a woman will elect for EA, with one study suggesting fear of EA side effects decreases EA uptake by half. [1] As EA allows insertion of a catheter, the medication can be given by bolus injection, continuous infusion or via a patient-controlled pump. This is in contrast to spinal anaesthesia (injection of local anaesthetic into the subarachnoid space), which, while faster and safer, does not allow insertion of a catheter for continuing analgesia. [2, 10] In many centres, a combined spinal and epidural anaesthetic (CSE) is given, where a single injection of local anaesthetic is inserted into the subarachnoid space (for fast onset of pain relief) in addition
to insertion of an epidural catheter for ongoing pain management. [10]

Women have widely differing views on what level of pain should be expected when giving birth. Evidence suggests that women who are more fearful of labour pain have a higher likelihood of choosing elective caesarean, and if they do choose labour, a higher chance of having an epidural. [1, 6] In contrast, women who are more accepting of labour pain, and more confident in their ability to cope with it, are generally more likely to decide against EA. [1, 6, 11] Other personal factors that increase the likelihood of a woman choosing EA include having a previous EA, partner preference, and attending a childbirth class. [4, 11] In addition, the attitudes and experiences of family and friends can influence a woman’s decision. It has been shown that women with friends or family who have had positive experiences with EA are more likely to choose EA themselves. [1] Likewise, hearing stories about how excruciatingly painful childbirth is may increase anxiety about the pain and increase EA uptake for primiparous women. [1]

Looking beyond a woman’s immediate circle of family and friends reveals another potential influence – celebrities and the media. There appears to be a widespread opinion (particularly amongst celebrities) that birth should be “natural”, which presumably refers to a lack of intervention. [12] Just as organic, gluten-free, paleo, and #cleaneating have taken off, a similar trend appears to be on the rise in childbirth. Perhaps next we will see the emergence of “organic” labour wards. Miranda Kerr had the media buzzing following her comments about having “a natural birth without pain relief” and not wanting a “drugged-up baby.” [13, 14] Whilst it was absolutely her choice to give birth “naturally” and opt out of pain medication, her celebrity status mean that her personal experiences and opinions are likely to influence the behaviours and attitudes of women all over Australia (and potentially the world). By going out of her way to state in her official announcement of the birth of her son: “I gave birth to him naturally; without any pain medication” it infers that those who decide otherwise are making the ‘wrong’ decision. [13, 14] Sweeping declarations like this have the potential to be damaging to women who did elect to use EA or needed a caesarean section. It may be that public assertions about their choices, made by Miranda Kerr and other celebrities such as Teresa Palmar and Gisele Bündchen, have turned EA into the enemy. [12] Such statements generate significant media interest and controversy, and have led to the emergence of the term “the smug natural birth” as well as suggestions that giving birth has become “a competitive sport.”[12]

But it’s not just celebrities and models that have a problem with epidurals. There is a difference of opinion between midwives and obstetricians as to how often epidural analgesia should be used. [15] An article published in Midwifery Today in 2010 referred to epidurals as “the drug trip of the current generation”, and even compared anaesthetists to “street drug pushers.” [16] Whilst clearly
this does not represent the views of all midwives, it is concerning that a prominent publication can present these opinions as if they were fact. This article also advised it’s audience of birth practitioners to remember that “a woman who can sit still long enough to have an epidural inserted during labor can have a relatively painless, unmedicated birth if she were provided adequate birth support in the home setting.”[16] This misinformation is dangerous given the fact that RANZCOG does not support the practice of planned homebirths due to its inherent and proven risks. [17] The reluctance of some midwives to offer EA has been well documented elsewhere. [15, 18, 19]

Furthermore, a number of Australian studies have found that the rate of epidural analgesia uptake is much higher in private hospital patients versus those seen in the public system. [20, 21] A New South Wales study from 2012 reported a 40% larger uptake of EA in private hospitals compared with public, as well as an overall increase in interventions. [20] This is similar to previous Australian data reporting a 50% increase in uptake of EA in private versus public care. [21] It is clear that many women are not in a position to choose whether they receive public or private care, but nonetheless it is apparent that where one gives birth has an impact on whether an EA will be performed or not. This raises issues of appropriate health care expenditure and a potential two-tier system in Australia that deserves adequate discussion and reflection in its own right. [20]

Ultimately, women should feel free to choose whatever pain relief they believe will help them most during labour, or to opt for none at all. Furthermore, whilst this reflection has focused primarily on women determining a birth plan in the antenatal period, women who choose non-pharmacological methods during that period should also feel free to progress to a pharmacological method during labour if they are not coping with the pain. It is important that women are informed and feel empowered to make these decisions, and this involves adequate discussion of the benefits and potential adverse effects of all their options. As the doctor – whether we are the obstetrician, the anaesthetist, the GP or perhaps even the resident, it is our job to ensure the patient fully understands that discussion. However, in order to communicate benefits and risks effectively we need an understanding of what influences a woman’s choice when it comes to pain medication, even more so when attempting to navigate the controversial minefield that is childbirth. Evidence-based medicine is brilliant, but sometimes we live in an evidence bubble – so influenced by statistics that we might forget to look outside at how the opinions and actions of others can also shape our patients’ decisions. To our patients, percentages may mean nothing in the face of Miranda Kerr and organic kale smoothies. A thorough discussion of a woman’s fears and attitudes towards the birthing process is undoubtedly a crucial component of comprehensive antenatal care.

Acknowledgements

None.

Conflict of interest

None declared.

Correspondence

C de Rooy: cderooy@outlook.com

Reference List:

[1] Van den Bussche E, Crombez G, Eccleston C, Sullivan M. Why women prefer epidural analgesia during childbirth: the role of beliefs about epidural analgesia and pain catastrophizing. European Journal of Pain. 2007;11(3):275-82.

[2] Anim-Somuah M, Smyth R, Jones L. Epidural versus non-epidural or no analgesia in labour (review). The Cochrane Database of Systematic Reviews. 2011.

[3] Jones L, Othman M, Dowswell T, Alfirevic Z, Gates S, Newburn M, et al. Pain management for women in labour: an overview of systematic reviews. The Cochrane Database of Systematic Reviews. 2012.

[4] Horowitz E, Yogev Y, Ben-Haroush A, Kaplan B. Women’s attitude towards analgesia during labour – a comparison between 1995 and 2001. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2004;117:30-2.

[5] Petersen A, Penz S, Mechthild M. Women’s perception of the onset of labour and epidural analgesia: a prospective study. Midwifery. 2013;29(284-93).

[6] Haines H, Rubertsson C, Pallant J, Hildingsson I. The influence of women’s fear, attitudes and beliefs of childbirth on mode and experience of birth. BMC Pregnancy and Childbirth. 2012;12.

[7] Narayan R, Hyett J. Labour and delivery. In: Abbott J, Bowyer L, Finn M, editors. Obstetrics & Gynaecology: an evidence-based guide. NSW: Elsevier Australia; 2014.

[8] Schinkel N, Colbus L, Soltner C, Parot-Schinkel E, Naar L, Fournie A, et al. Perineal infiltration with lidocaine 1%, ropivacaine 0.75%, or placebo for episiotomy repair in parturients who received epidural labor analgesia: a double-blind randomized study. International Journal of Obstetric Anesthesia. 2010;19(3):293-97.

[9] Cheng Y, Shaffer B, Nicholson J, Caughley A. Second stage of labor and epidural use: a larger effect than previously suggested. Obstetrics and Gynaecology. 2014;123:527-35.

[10] Heesen M, van de Velde M, Klohr S, Lehberger J, Rossaint R, Straube S. Meta-analysis of the success if block following combined spinal-epidural vs epidural analgesia during labour. Anaesthesia. 2014;69(1):64-71.

[11] Harkins J, Carvalho B, Evers A, Mehta S, Riley E. Survey of the factors associated with a woman’s choice to have an epidural for labor analgesia. Anesthesiology Research and Practice. 2010.

[12] Wainwright H. Terrific, now birth has become a competitive sport. Mamamia [Internet]. 2014. Available from: http://www.mamamia.com.au/celebrities/natural-birth/.

[13] Mamamia Team. This is why Miranda Kerr had a natural birth. Mamamia [Internet]. 2012. Available from: http://www.mamamia.com.au/news/natural-birth-miranda-kerr/.

[14] Wellman V. ‘I didn’t want a drugged up baby’: Miranda Kerr on her decision not to have a epidural during son Flynn’s birth. The Daily Mail [Internet]. 2012. Available from: http://www.dailymail.co.uk/femail/article-2169435/Miranda-Kerr-decision-epidural-son-Flynns-birth.html.

[15] Reime B, Klein M, Kelly A, Duxbury N, Saxell L, Liston R, et al. Do maternity care provider groups have different attitudes towards birth? BJOG: an International Journal of Obstetrics and Gynaecology. 2004;111(12):1388-93.

[16] Cohain J. The epidural trip: why are so many women taking dangerous drugs during labour? Midwifery Today. 2010;65:21-4.

[17] The Royal Australian College of Obstetricians and Gynaecologists. RANZCOG Clinical Guidelines: Home births 2011. Available from: http://www.ranzcog.edu.au/college-statements-guidelines.html.

[18] Potera C. Evidence supports midwife-led care models: fewer premature births, epidurals, and episiotomies; greater patient satisfaction. The American Journal of Nursing. 2013;113:15.

[19] Raini R, Salamut W, Chowdhury P, Daborwska D. Epidurals: myths and old wives tales – what are the midwives telling our patients? Anaesthesia. 2013;68:98.

[20] Dahlen H, Tracy S, Tracy M, Bisits A, Brown C, Thornton C. Rates of obstetric intervention and associated perinatal mortality and morbidity among low-risk women giving birth in private and public hospitals in NSW (2000-2008): a linked data population-based cohort study. BMJ Open. 2014;2.

[21] Roberts C, Tracy S, Peat B. Rates for obstetric intervention among private and public patients in Australia: a population based descriptive study. British Medical Journal. 2000;321:137-41.

Categories
Feature Articles

The role of general practice in cancer care

The incidence of cancer has risen in Australia and globally over the past few decades. Fortunately, advances in medicine have enabled cancer patients to live longer. We now have the means to provide better healthcare and support for this group of ‘survivors’. However, this situation also poses unique challenges to the healthcare system as resources are limited but healthcare professionals are required to do more. In recent years, there has been a call for an expansion of the role of general practitioners (GPs) in cancer care. Such a primary care-based approach allows GPs to pursue their interests in cancer management and enables diversification of healthcare resources. This article will attempt to examine how general practice can be involved in cancer care in Australia.

v6_i1_a29

Introduction

Cancer is a chronic disease on the global scale. In Australia, cancer accounts for approximately a quarter of all deaths. [1] By the age of 75, one in three males and one in four females will be expected to be diagnosed with cancer. [1] These figures may be attributed to higher population growth and an ageing population. [2] As patients are diagnosed earlier and receive better treatment, more cancer patients transit into survivorship. [3] Consequently, the immediate demands of cancer care extend beyond diagnosis and treatment and towards multi-disciplinary care, which focuses on providing support and improving the quality of life of patients. This article will briefly examine the factors influencing the involvement of primary care physicians in cancer care in Australia and reference initiatives implemented by other countries.

Patterns of cancer care and areas of GP involvement

Cancer management is complex and involves different healthcare providers. According to Norman et al., cancer care patterns may be sequential, parallel or shared. [4] In sequential care, patients are mainly cared for by oncology teams while parallel care requires general practice (GP) management of non-cancer problems. Shared care has the greatest GP involvement and requires joint management of cancer care by GP and oncology teams. GPs in Australia are mostly involved in screening and diagnosis of cancer and, eventually, referral to specialists who take over treatment and patient follow-up. GPs also play a role in managing the side effects of treatment as well as education (including prevention measures) of patients and their families. Depending on the treatment outcome, supportive or palliative care may also be provided by GPs.

In the future, it is expected that GPs will need to accept responsibilities outside their remit. This is due to a limited number of specialists in rural and remote areas and the need to diversify and expand the healthcare workforce. [5] Furthermore, health systems that include strong primary medical care were shown to be more efficient and have better health outcomes. [6] Therefore, there is a gradual move towards shared care models with GPs playing a central role alongside other healthcare providers. In this context, it will be important to understand the factors influencing the involvement of GPs in cancer care and how to maximize their involvement throughout the spectrum of cancer care.

Factors influencing GP involvement in cancer care

Location of GPs

The degree of involvement of GPs may depend on where they are based. [7] Out of necessity, GPs in rural and remote areas could be involved in coordination of cancer care and also some aspects of treatment (e.g. pre-chemotherapy checks) and follow-up of side effects. Conversely, GPs working in urban settings were more likely to refer patients upon diagnosis.

Studies have shown that indigenous Australians and other minority groups living in rural or remote areas have higher cancer mortality rates due to reduced access to healthcare. [8] GPs working in these settings could reduce this inequality through better prevention and diagnosis,  timely  referrals  as  well  as  treatment  of  co-morbidities- areas which are traditionally within the remit of primary care. [9] Although the cancer curriculum in Australian GP training focuses on these areas, it is estimated that GPs only encounter about four new cancer cases each year with cases exhibiting huge variability in cancer types and treatment requirements. [7] Such a scenario necessitates opportunities for GPs to improve their skills and experience through case-based learning and seminars. [7] Online learning modules offered by Cancer Australia are a good starting point but more effort will be required to promote these learning opportunities as GPs may not be aware of such resources. [7,10]

In recent years, the rise of telemedicine has provided an important tool in connecting rural GPs and specialists. This has enabled rural GPs to be more involved in cancer care as they can easily gain access to specialist knowledge. In Queensland, medical oncology services via videoconferencing were trialed and provided to remote and rural communities. [11] Satisfaction levels were high among both patients and rural health workers with such benefits as reduced time and money,  improved  communication between specialists  and  patients and greater access to specialist support by rural GPs. [11]

Communication pathways

Communication between GPs and hospital-based services is regarded as a major challenge facing general practice in Australia. The main form of communication from hospitals to GPs is the discharge summary and specialist letter with GPs receiving information mainly from  hospital  medical  officers.  [5]  The  variable  quality  and  poor

timeliness of information received has been shown to impede quality communication between GPs and hospitals. These factors were attributed to poor understandings of GP roles in cancer care and their information needs, as well as inexperience of medical officers. [5] It was found that hospital communications to GPs tend to omit social information about the patient. As cancer patients have been shown to be dependent on GPs for psychosocial support, the social needs of cancer patients may not be addressed adequately by GPs if poor communication persists. [1]

 

It was also shown that GPs preferred to receive a multi-disciplinary discharge summary containing input from all health professionals involved. [5] The creation of electronic health records may facilitate the  development  of  such  a  discharge  summary.  In  Canada,  the British Columbia (BC) e-health initiative allows authorized health professionals working in BC to access complete patient records when and where they were required. [12] This initiative was shown to reduce patient delays and costs to healthcare providers and patients and is a great demonstration of how improved communication via improved access to patient records may improve healthcare outcomes of cancer patients. Nonetheless, it is important that such electronic platforms are developed for and with healthcare practitioners to allow them to tackle the patient’s needs without being burdened by technology. [12]

Regular  meetings  may  also  improve  communication  between  GPs and specialists. Mitchell et al. suggested that GPs should be regularly involved in hospital-based multi-disciplinary team (MDT) meetings. [13] It is heartening that a national survey found that 84% of GPs would consider taking part in MDT meetings should the opportunity arise. [14] This suggests that formalization of MDT meetings is highly feasible. Cancer patients may benefit from the sharing of experiences between members of a formalized MDT team and this could be crucial to patients who suffer from low-incidence cancers where experience of the team matters and also to GPs, who would otherwise have little awareness about which specialists to approach for specific cancers. [13]

Remuneration and financial incentives

Inadequate remuneration may also deter GPs from accepting additional responsibilities.  A recent study found an increasing proportion of Australian GPs are not involved in palliative care (25%) as compared to previous rates of 5% and 8% in 1993 and 1998 respectively. [15] Poor remuneration in relation to the time and knowledge required for palliative care may be a deterring factor. There is currently no requirement for GPs to provide after-hour services for palliative care and some GPs also reflect that they are not confident enough to manage the technical and psychosocial aspects of palliative care. [15]

Financial incentives may be helpful as the workload of GPs has increased but their incomes have decreased relative to specialist incomes. [6] In the United Kingdom, the Gold Standards Framework for palliative care rewards GPs who are interested in palliative care and demonstrate quality care through regular meetings and maintenance of a patient register. [16] Such a scheme may attract GPs to be more involved in palliative care. In addition, to increase involvement of GPs in population-based screening programs, the current payment scheme in Australia should be revised to reward service not just based on service to symptomatic patients but also asymptomatic cancer patients who approach GPs for counseling and other psychosocial issues. [8]

Role of healthcare providers

The  roles  of  healthcare  providers  are  often  unclear.  Holmberg  et al. reported that while some people understand the role of GPs in cancer care, others felt that their roles were not stated explicitly in guidelines. [17] The varying perception of GP roles may hinder GPs from expressing their information needs and prevent their expanded involvement in treatment and follow-ups.  It has been shown that patients prefer to know who is in charge and parallel care may provide a clearer definition of GP and specialist roles. [18] Moreover, parallel care is not as demanding as shared care in terms of the level of communication required to facilitate coordination of cancer care and may therefore be favoured by both GPs and specialists. [18] While it is important to align patients’ perception with the preferences of healthcare providers, a parallel pattern of care may not be necessarily be the most effective. This explains why there is now a gradual move towards multi-disciplinary care based on shared care models, which was highlighted in Australia’s 2009 report on ‘A healthier future for all Australians’. [19]

A shared care model would require clarity of roles and a need to recognize and expand the role of primary care without compromising healthcare outcomes. Two randomized control trials in the United Kingdom (UK) and Canada showed that follow-up of breast cancer patients by GPs was as safe as follow-up by specialists while an Australian study showed no difference in recurrence rates of colorectal cancer patient after follow up by GPs or specialists. [20,21] These studies imply that GPs may undertake a greater role in the follow- up phase. Similarly, there may also be a growing role for GPs in the treatment phase,  in  terms of  management of toxicity episodes or pre-chemotherapy checks, as new oral chemotherapeutic agents are developed. [13]

Access  to  protocols  such  as  The  Cancer  institute  NSW  Standard Cancer Treatment Program (CI-SCaT) may allow GPs to manage cancer patients without requiring too much reliance on specialist expertise. [13] Similarly, GPs can access wiki-based clinical practice guidelines which are developed and constantly updated by Cancer Council Australia. [22] GPs based in rural/remote areas have been relying on generic clinical skills adapted to cancer care to manage cancer patients for years and supplementation of these skills by specialized cancer information may improve the feasibility and practicality of GP-based cancer management. [23]

GP preferences and input

While there is much potential for the expansion of GP roles, GP preferences and their input in cancer plans needs to be valued. GPs generally express interest in being involved in areas that are traditionally within their remit such as prevention, diagnosis, surveillance and psychological support but less than 50% of GPs expressed a desire to undertake coordination roles in treatment and supportive care. [7] These observations may reflect underlying structural and systemic constraints (e.g. workload and payment structures) that could only be addressed effectively at a governmental level. Conversely, as mentioned previously, GPs in rural/remote areas are already actively involved in coordination of cancer and psychological care and thus they may accept expanded roles more readily.

Ultimately, there needs to be a buildup of trust and confidence in GP capabilities and increased involvement of GPs in cancer control plans will  be  necessary.  Internationally,  the  UK  National  Health  Service (NHS) has involved GPs in its cancer plan since 2000. [1] Similarly, in Australia, GPs have been involved in the National Service Improvement Framework for Cancer while a scoping exercise undertaken by the National Cancer Control Initiative in 2004 has sought to identify areas of priority to support cancer care by primary healthcare providers. [1] A result of which was the Cancer Service Networks National Demonstration Program (CanNET) which was funded by the Australia government in seven states. It was conceived as a means of identifying opportunities to improve the organization and delivery of cancer care via MDTs and managed clinical networks (MCNs) so as to improve outcomes and reduce disparities in cancer survival rates across population groups. [24]

Lessons from CanNET

The evaluation of CanNET provided valuable insights into the provision of multi-disciplinary cancer care. For example, in addition to effective communication, it was found that networking events and activities were essential  to  building  up  professional  relationships  between healthcare providers. [24] Moreover, although GPs were willing to be involved in MDT sessions, engaging GPs was found to be difficult due to constraints imposed on general practice. [24] This suggests that while examining constraints on the specialist side is important and has been researched extensively, increased focus should also be placed on alleviating constraints on the GP side.

CanNET was also found to increase the work burden for healthcare providers. [24] This has prompted a re-think of healthcare providers’ roles to incorporate more flexibility.  A number of innovative roles are found overseas and could be trialed in various CanNET networks. For example, the Uniting Primary Care and Oncology Network (UPCON) in Manitoba advocated the use of medical leaders in the form of lead family physicians (FPs). [25] These lead FPs are primary care physicians within a practice who have an interest in cancer care and constantly engage in regular education programs and meetings jointly organized by oncologists and FPs. They disseminate useful information to colleagues and also play an advisory role by raising issues pertaining to primary care during meetings with oncologists and the Manitoba cancer agency. Besides occasionally accepting referrals, lead FPs did not have to perform difficult or unfamiliar tasks and they were remunerated according to their level of involvement. [25] This program managed to improve the partnership between GPs and other healthcare providers and could potentially fit into the Australian system.

Consistent with the theme of medical leadership, it was found that the introduction of continuing professional development (CPD) was effective in promoting local champions in some CanNET networks. CPD opportunities such as mentoring and clinical placements were received positively and more than half of the healthcare providers surveyed acknowledged that these activities helped increased their knowledge and skills and provided valuable networking opportunities. [24] Nonetheless, more work is required to address potential constraints such as workload and staff shortages. This again raises the importance of tele-oncology as a possible solution as essential oncology skills may be learnt during GP sit-ins with patients, therefore reducing the need for face-to-face attendance of workshops.

Looking to the future- the ideal oncology curriculum

The Oncology Education Committee of Cancer Council Australia has developed an ideal oncology curriculum for medical schools with the aim of equipping students with the knowledge, skills and attitude to provide quality care to cancer patients and their caregivers. This curriculum  has  been  reviewed  recently  to  include  more  emphasis on clinical experiences such as ‘observing all components of multi- disciplinary  cancer  care’.  [26]  These  changes  reflect  the  need  for future doctors who are able to work within a multi-disciplinary cancer care setting and who can understand the role of healthcare providers (including GPs) in different phases of a cancer patient’s journey. [26] Students who are interested in becoming GPs will need to be familiar with the specific needs and requirements of cancer patients as GPs are often the first point of call. Furthermore, students who take up the Medical Rural Bonded Scholarship Scheme (MRBS) and end up in rural settings will be expected to take up more responsibility than their urban counterparts. As such, changes in medical education may pave the way for changes in future medical practice.

Conclusion

Cancer management in Australia is gradually changing toward a shared care model with a focus on multi-disciplinary care. In this context, there is an increasing demand for GPs to expand their roles to relieve the pressure on other healthcare providers. Existing constraints that impede the involvement of GP will need to be addressed. These include issues pertaining to communication, remuneration, role clarity as well as GP preferences and input. A number of initiatives such as CanNET were implemented and has helped identify areas which could promote a greater role for general practice in cancer care. Overseas healthcare initiatives such as UPCON and the BC e-health initiative will also provide further valuable lessons in our search for solutions. Currently, tele-oncology appears to be a viable approach in improving rural GP involvement in cancer care and alleviating workload and staff shortages.

In conclusion, GPs have the capacity to provide quality cancer care alongside their specialist counterparts and it would be a more efficient use of healthcare resources to involve rather than neglect them. It is unlikely that specialist cancer care will be compromised as they form the core component of the actual treatment process whereas GPs are envisioned to take up coordinating as well as diagnosis and follow-up roles. As the roles of the GP can be flexible depending on preference and expertise, this is in itself advantageous as cancer care is no longer limited by the number of specialists. Specialist care may also be enhanced due to a more focused and individualized approach afforded by the less workload taken on by the specialists.

Acknowledgements

None.

Conflict of interest

None declared.

Correspondence

K Ho: koho2292@uni.sydney.edu.au

References

[1] McAvoy BR. General practitioners and cancer control. Med J Aust 2007; 187(2):115-7.

[2] Australian Institute of Health and Welfare, Australasian Association of Cancer Registries. Cancer in Australia 2001. AIHW Cancer Series No. 28. (AIHW Cat.No. CAN 23.) Canberra: AIHW, 2004.

[3] Phillips JL, Currow DC. Cancer as a chronic disease. Collegian 2010; 17(2):47-50.

[4] Norman A, Sisler J, Hack T, Harlos M. Family physicians and cancer care.Palliative care patients’ perspectives. Can Fam Physician 2001; 47:2009-16

[5] Rowlands S, Callen J, Westbrook J. Are general practioners getting the information they need from hospitals to manage their lung cancer patients? A qualitative exploration. HIMJ 2012; 41(2)4-13.

[6] Harris MF, Harris E. Facing the challenges: general practice in 2020. Med J Aust 2006; 185(2):122-4.

[7] Johnson CE, Lizama N, Garg N, Ghosh M, Emery J, Saunders C. Australian general practitioners’ preferences for managing the care of people diagnosed with cancer. Asia Pac J Clin Oncol 2012;doi: 10.1111/ajco.12047

[8] Jiwa M, Saunders CM, Thompson SC, Rosenwax LK, Sargant S, Khong EL, et al. Timely cancer diagnosis and management as a chronic condition: opportunities for primary care. Med J Aust 2008; 189(2):78-82.

[9] Campbell NC, Macleod U, Weller D. Primary care oncology: essential if high quality cancer care is to be achieved for all. Fam Pract 2002; 19(6):577-8.

[10] Cancer Australia. Cancer learning.  2011. Available from: http://www.cancerlearning.gov.au/.

[11] Sabesan S, Simcox K, Marr J. Medical oncology clinics through videoconferencing: an  acceptable  telehealth  model  for  rural  patients and  health  workers.  Intern  Med  J 2012;42(7):780-5.

[12] British Columbia eHealth Steering Committee. eHealth Strategic Framework. British Columbia Ministry of Health, Vancouver 2005.

[13] Mitchell, G. (2008). The role of the general practice in cancer care. Australian Family Physician 2008; 37(9):698-702.

[14] Australia Government: Cancer Australia. CanNET national evaluation (final report-phase  1).  2009.  Available  from:  http://canceraustralia.gov.au/publications-resources/cancer-australia-publications/cannet-national-evaluation-final-report-phase-1

[15] Rhee JJ, Zwar N, Vagholkar S, Dennis S, Broadbent AM, Mitchell G. Attitudes and barriers to involvement in palliative care by Australian urban general practitioners. J Palliat Med 2008; 11(7):980-5.

[16] Munday D, Mahmood K, Dale J, King N. Facilitating good processes in primary palliative care: does the Gold Standards Framework enable quality performance? Fam Pract 2007:1-9.

[17]  Holmberg,  L.  The  role  of  the  primary-care  physician  in  oncology care.  Primary healthcare and specialist cancer services. The Lancet Oncology 2005;6:121-122.

[18] Aubin M, Vezina L, Verreault R, Fillion L, HudonE, Lehmann F, et al. Family physician involvement in cancer care follow up: the experience of a cohort of patients with lung cancer. Ann Fam Med 2010; 8(6):526-32

[19]  National  Health  and  Hospitals  Reform  Commission.  A  Healthier  Future  for  All Australians  –  Final  Report  of  the  National Health  and  Hospitals  Reform  Commission. Canberra, 2009:107.

[20] Grunfeld E. Cancer survivorship: a challenge for primary care physicians. Br J Gen Pract 2005; 55(519):741-742

[21] Esterman A, Wattchow D, Pilotto L, Weller D, McGorm K,Hammett Z. Randomised controlled trial of general practitioner compared to surgical specialist follow up of patients with colorectal cancer. 2004. Paper presented at the GP & PHC Research Conference. http://www.phcris.org.au/conference/2004/index.php

[22] Cancer Council Australia. Cancer council Australia wiki platform. 2012. Available from: http://wiki.cancer.org.au/australia/Main_Page

[23] Mitchell GK, Burridge LH, Colquist SP, Love A. General practitioners’ perceptions of their role in cancer care and factors which influence this role. Health Soc Care Community 2012; 20(6):607-16.

[24] Australia Government: Cancer Australia. CanNET national evaluation (final report-phase  1).  2009.  Available  from:  http://canceraustralia.gov.au/publications-resources/cancer-australia-publications/cannet-national-evaluation-final-report-phase-1

[25] Sisler J, McCormack-Speak P. Bridging the gap between primary care and the cancer system: the UPCON network of CancerCare Manitoba. Cam Fam Physician 2009; 55(3):273-8.

[26]  Cancer  Council  Australia.  Ideal  oncology  curriculum  for  medical  schools.  2012. Available from: http://www.cancer.org.au/health-professionals/oncology-education/ideal-oncology-curriculum-for-medical-schools.html

Categories
Feature Articles

Ki-67: a review of utility in breast cancer

Ki-67 is a protein found in proliferating cells that is identifiable by immunohistochemistry (IHC).   Its prognostic and predictive value in breast cancer has been an area of avid research in recent literature and is increasingly shown to be of value.   Identifying the presence of Ki-67 protein is now an accepted technique to differentiate hormone receptor (HR)-positive breast malignancies, and as a marker of prognosis in these tumours.  It is also shown to  have  predictive  value  in  neoadjuvant  chemotherapy,  and post-neoadjuvant endocrine therapy.  Whilst it is not currently recommended as a routine investigation in the diagnosis of breast cancer, with standardisation of its methodology it has potential to become so.

v6_i1_a28

Introduction

Breast  cancer  is  the  most  frequent  cancer  of  women  (excluding non-melanoma skin cancer) in Australia.   Survival of breast cancer has improved significantly in recent decades, with five-year relative survival increasing from 72% in the mid-1980s to 89% by 2010. [1] Survival rates have improved as a result of developments in screening, treatment and also diagnosis.

It is currently an exciting era in diagnostic medicine, with rapidly increasing knowledge and research leading to increased availability of diagnostic techniques. Improved diagnostics are allowing us to classify tumours not only based on their anatomical location and pathological appearance,   but   also   by   molecular   and   genetic   typing.      This increasing complexity of diagnosis and subtyping is allowing for more individualised cancer treatments and better outcomes for patients. Immunohistochemistry is an area of diagnostics that has blossomed over the past two decades. One of the most frequent uses of diagnostic IHC is in breast pathology.  IHC techniques may have prognostic and predictive value, [2] and contribute to the trend towards targeted and bespoke therapies.  Numerous tests have now been developed and some have become a standard part of the diagnostic work-up, such as for oestrogen receptors (ER) and progesterone receptors (PR), and human epidermal growth factor receptor 2 (HER2).

Despite the improvements in diagnosis, there remains a group of patients whose risk of recurrence is indistinguishable based on current standard tests.  This leads to potential overtreatment of patients who would not benefit from therapy, and potential under treatment of those who would. [3] Other tests include multi-gene predictors and urokinase plasminogen activator testing that also have proven benefit as prognostic factors, and possibly have predictive value.   The Ki-67 protein is a marker of proliferation that has been known for over two decades and has been the subject of renewed study and reporting of late. However, its popularity and integration into practice has been somewhat controversial.

Ki-67 as a proliferation marker

Ki-67 is a unique protein that is found exclusively in proliferating cells. It is present in the nuclei of cells in the G1, S and G2 phases of cell division and peaks in mitosis. Cells in the G0 phase do not express Ki-67. It is present in all cells, both tumour and non-tumour, and its presence is a marker of growth fraction for a certain cell population. [4] Despite the numerous studies demonstrating its presence in proliferating cells, the exact role of Ki-67 in cell division is as yet unknown. [5] Ki-67 was first assessed for prognostic value in non-Hodgkin’s lymphoma, but is increasingly used in various malignancies, [4] most notably in breast cancer. It has now been proven that a higher fraction of stained nuclei is associated with worse prognosis, and healthy breast tissue exhibits low levels of Ki-67 (<3%). [6]

Counting mitoses, flow cytometry (for determining S-phase fraction), and IHC for Ki-67 are common techniques for determining growth fraction.  Flow cytometry is not recommended in prognostication due to difficulty with methodology. [7] Logically, counting mitoses and Ki-67 should correlate highly but clinical studies have shown that only 51% of high Ki-67 expressing breast tumours have a high mitotic index. [8] Ki-67 and the other proliferation markers, despite showing promise, are not recommended as a routine part of breast cancer workup currently. [3]

Ki-67 as a surrogate genetic marker

Ki-67 and mitotic rate are both considered markers of cell proliferation, however Ki-67 is considered a superior prognostic marker. [6] One reason it can be used for prognostication is that it may act as a surrogate for genetically different tumours.  Patients with ER-positive tumours, like other malignancies, are known to display a great variance in behaviour, including response to therapy. This occurs because tumours display a heterogeneous mix of gene expression grade index. [9] To improve prognostication and therapy recommendations, breast malignancies were genetically subclassed into five subtypes (luminal A, luminal B, HER2-enriched, basal-like, and normal breast-like). Of most interest is the differentiation between luminal A and luminal B, which (by one author’s definition) are both ER-positive and HER2-negative tumours but display contrasting behaviour. [10] Luminal B tumours typically have worse outcomes and demonstrate higher proliferation. Genetic typing showed certain genes (such as CCNB1, MK167, and MYBL2) have higher expression in luminal B tumours. [10] Given that genetic testing is expensive, and hence impractical, as a routine test in some settings, [8] Ki-67 can be used as a surrogate measure.  This phenomenon has been studied wherein the combined prognostic value (IHC4) of ER status, PR status, Ki-67, and HER2 was shown to be of similar prognostic value to a more expensive 21-gene test. [11] Very recent Australian data shows that when tumours are divided into luminal A and B with the use of Ki-67 “the 15-year breast cancer specific survival was 91.7% [and] 79.4%” respectively. [8] This confirms the clinical variation in these tumours. These figures were only in lymph node-negative breast cancer treated with breast-conserving surgery and postoperative radiotherapy.

Prognostic value

Ki-67 has been accepted to differentiate between luminal B and luminal A tumours without additional genetic testing. [12,13] The best cut-off score to differentiate ER-positive HER2-negative tumours is currently thought to be around 14%. At or above this figure, a tumour can be regarded as luminal B subtype and hence having a poorer prognosis. However Ki-67 is also associated with “younger age at diagnosis, higher grade, larger tumor size, positive lymph node involvement, and lymphovascular invasion.’ [10] This is echoed in other large preclinical trials. [14]

A high Ki-67 is also shown to be associated with poorer ten-year relapse-free survival and breast cancer specific survival. This has been demonstrated in node-positive tumours, node-negative tumours, those treated with tamoxifen as the only agent, and those who are treated with combination therapy of tamoxifen and a chemotherapeutic agent. [6,10] A large retrospective Australian study has confirmed that Ki-67 appears to have significant mortality prediction.  In their experience, a Ki-67 cut-off of 10% yielded the highest sensitivity and specificity, and at this level patient mortality rose from 3% in the low-Ki-67 group to 22%, and 15-year survival increased from 3% to 22%. Of note, this study did not differentiate luminal A and luminal B, and this did not exclude ER-negative tumours, nor-HER2-negative tumours, and so only looked at outcomes based on Ki-67.  Interestingly, all HER2-positive tumours were high-Ki-67 tumours.  The difference in the Ki-67 cut-off when compared with the 14% from previous trials is likely explained by the lack of inter-laboratory validation. The poorer 15-year survival of the high-Ki-67 tumours, compared with Pathmanathan’s [8] study, can be partially explained by the inclusion of HER2-positive tumours and triple negative tumours, which are known to have poorer prognosis.

Aleskandarany  et al. [15] in their larger study confirmed the variation between luminal tumour but also suggest that there is little prognostic value in Ki-67 in subcategorising HER2-positive and triple negative tumours[16].  Further, they revealed that “ [a high Ki-67 is] associated with premenopausal status, larger tumor size, definite vascular invasion, and lymph node involvement”, thus in non-luminal tumours may be selecting a patient group with other predictors of poor prognosis.

Ki-67 predictive value

Studies regarding the predictive value of the test are not yet as convincing as for prognostication, but continue to be an area of continued research and debate.

There are potential roles for Ki-67 in directing therapy in primary chemotherapy, neoadjuvant chemotherapy, neoadjuvant endocrine therapy, and in radiotherapy case selection. Chang et al. [17] suggested that tumours with a high Ki-67 are likely to respond more favourably to chemotherapeutic agents in the primary setting and that Ki-67 as a marker may be measured temporally during treatment to assess response.  This study, however, had a small sample size and a single therapeutic regime, making it difficult to adopt in clinical practice.

Viale, [18] in his large retrospective review, showed that Ki-67 did not predict the relative efficacy of neoadjuvant chemoendocrine therapy in node-negative hormone receptor (HR)-positive tumours. However, this does not imply that Ki-67 has no role in directing adjuvant chemotherapy in other groups of breast malignancy.   This has been further studied in a group of high risk breast malignancies by Denkert et al. [19]  Denkert’s group demonstrated that Ki-67 predicts response to neoadjuvant chemotherapy in HR-positive, HR-negative, HER2-negative, and triple negative groups.  It also shows an effect on disease free survival (DFS), and overall survival (OS) in HR-positive and HER-negative groups.  This study also reveals that Ki-67 percentage is a continuum and subsets may not be simply broken down into ‘high’ and ‘low’; rather, multiple cut-off points may be required for a single tumour type and a variation of cut points required based on the studied endpoint (e.g. DFS or pathological response) and different tumours. To achieve this, further trials recording information prospectively will be necessary.

Ellis studied Ki-67 in the neoadjuvant endocrine therapy setting, and reported that it has limited role in pre-treatment biopsies, but its post- neoadjuvant treatment value predicts relapse-free survival. [20]  Ellis suggests that when Ki-67 and ER status are combined post-surgery, a low value is correlated with low levels of relapse, and states that therapy beyond continuation of endocrine agent is likely unnecessary. In contrast, poor biomarker profile post-surgery is associated with significantly earlier relapse, more typical of ER-negative tumours; patients should be “offered all adjuvant treatments”. [20]

Ki-67 also has predictive value outside of HR-positive tumours. There is evidence showing that in HR-negative tumours, a Ki-67 >20% is a predictor for clinical and pathological response in the neoadjuvant setting with anthracycline-based chemotherapy. [21] It showed that patients with HR-negative status and Ki-67 >20% were much more likely to respond to their prescribed regime. However the authors did not give the absolute variation in response based on Ki-67, and did not test with a variety of agents or protocols to see if IHC could be used to recommend a particular agent.

Another role for Ki-67 in the neoadjuvant chemotherapy setting is in reviewing the response to therapy. A number of authors have shown that Ki-67 percentage often decreases after adjuvant therapies, and that  reduction may  correlate  with  pathological  response  and  DFS. [22] Dowsett and colleagues [23,24] measured Ki-67 both at baseline and two-week post-neoadjuvant endocrine therapy.  These authors suggest that the Ki-67 after two weeks of neoadjuvant therapy is of greater prognostic value than at baseline.  They hypothesised that a great change in Ki-67 should also be predictive of outcome, but the trial failed to show this.

Despite the scarcity of high-quality data the latest St Gallens consensus supports the use of Ki-67 in defining luminal B tumours and states, “For patients with luminal B (HER2-negative) disease, the majority of the panel considered chemotherapy to be indicated. Chemotherapy regimens for luminal B (HER2-negative) disease should generally contain anthracyclines and… taxanes”. [12]  This suggests that some groups have already adopted Ki-67 as a significant predictive factor in the management of HR-positive tumours.

Barriers to Ki-67 being used as a routine component of breast cancer workup

When Ki-67 staining is performed, nuclei display brown pigmentation. The area of greatest staining is used for counting, and the fraction of nuclei stained by the antibody is used to determine a percentage score. Ki-67 score is the first IHC marker that requires exact quantification to assess its benefit and there is currently no standardised methodology to do this. [25,26] This has led to a broad range of recommendations regarding the minimum number of cells analysed to accurately ascertain the percentage. [19] There are also many antibodies that are commercially available which may display subtle variances in result. [27] Further variations may also be seen based on the method of counting, i.e. computer aided versus human analysis. [28] The lack of a standard method to ascertain the percentage in a reproducible way combined with the other variances in techniques leads to inter/ intra operator and laboratory variances.  These have made it currently difficult to incorporate Ki-67 into routine use. [26]

Other IHC assays have been validated in the field of breast malignancies, such as for HER2, [29] and have led to more concrete recommendations. [12] Validation involves standardised recommendations for numerous factors including tissue handling, fixation, assay selection, comparison to standards, and ensuring inter and intra-laboratory concordance. [30] Further, this has been complimented by the development of HER2 in-situ hybridisation (ISH) to assess the underlying gene expression, which may be superior or complimentary. [30] These advancements are yet to be achieved in Ki-67 analysis. Validation and standardisation of Ki-67 in a similar way has been called for by many authors, and if achieved will increase confidence in results and may allow for it to be used as part of routine testing. [25]

Conclusion

The renewed interest in Ki-67 in breast malignancies has proved its prognostic value, particularly in subgrouping HR-positive HER2- negative breast cancers.   There is now increasing evidence to show that it may have a predictive role, with most evidence pointing to its role in both directing neoadjuvant chemotherapy and in assessing tumours  post-neoadjuvant  therapy  to  help  direct  further  adjuvant

therapy. Ki-67, along with other commonly used IHC assays and genetic testing are facilitating a move away from previously crude methods of treatment to increasingly tailored treatment solutions for our patients. Once standardised, Ki-67 may provide a cost-effective contribution to this trend.

Acknowledgements

None.

Conflict of interest

None declared.

Correspondence

K Parthasarathi: krishnanpartha@hotmail.com

References

[1] Cancer Australia. Breast cancer statistics [Internet]. 2013 Mar. 6 [cited 2013 Sep. 29];1–2. Available    from:    http://canceraustralia.gov.au/affected-cancer/cancer-types/breast-cancer/breast-cancer-statistics

[2] Bhargava R, Esposito NN, Dabbs DJ. Chapter 19 – Immunohistology of the breast. 3rd Elsevier Inc.; 2011.

[3] Patani N, Martin L-A, Dowsett M. Biomarkers for the clinical management of breast cancer: International perspective. Int J Cancer. 2013;133(1):1–13.

[4] Scholzen T, Gredes J. The Ki-67 protein: From the known and the unknown. J Cell Physiol. 2000;182:311–322.

[5]  Jalava  P,  Kuopio  T,  Juntti-Patinen  L,  Kotkansalo  T,  Kronqvist  P,  Collan  Y.  Ki67 immunohistochemistry:   A   valuable   marker   in   prognostication  but   with   a   risk   of misclassification: Proliferation subgroups formed based on Ki67 immunoreactivity and standardized mitotic index. Histopathology. 2006;48(6):674–682.

[6] Yerushalmi R, Woods R, Ravdin PM, Hayes MM, Gelmon KA. Ki67 in breast cancer: Prognostic and predictive potential. Lancet Oncol. 2010;11(2):174–183.

[7] van Diest PJ. Prognostic value of proliferation in invasive breast cancer: A review. J Clin Pathol. 2004;57(7):675–681.

[8] Pathmanathan N, Balleine RL, Jayasinghe UW, Bilinski KL, Provan PJ, Byth K, et al. The prognostic value of Ki67 in systemically untreated patients with node-negative breast cancer. J Clin Pathol. 2014;67(3):222–228.

[9] de Azambuja E, Cardoso F, de Castro G, Colozza M, Mano MS, Durbecq V, et al. Ki-67 as prognostic marker in early breast cancer: A meta-analysis of published studies involving 12 155 patients. Br J Cancer. 2007;96(10):1504–1513.

[10] Cheang MCU, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index, HER2 status,  and  prognosis  of  patients  with  Luminal  B  breast  cancer.  J  Natl  Cancer  Inst. 2009;101(10):736–750.

[11] Cuzick J, Dowsett M, Pineda S, Wale C, Salter J, Quinn E, et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the genomic health recurrence score in early breast cancer. J Clin Oncol. 2011;29(32):4273–4278.

[12] Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thurlimann B, et al. Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol. 2013;24(9):2206–2223.

[13] Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ, et al. Strategies for  subtypes–dealing  with  the  diversity  of  breast  cancer:  Highlights  of  the  St  Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol. 2011;22(8):1736–1747.

[14] Engels CC, Ruberta F, de Kruijf EM, van Pelt GW, Smit VTHBM, Liefers GJ, et al. The prognostic value of apoptotic and proliferative markers in breast cancer. Breast Cancer Res Treat. 2013;142(2):323–339.

[15] Aleskandarany MA, Green AR, Rakha EA, Mohammed RA, Elsheikh SE, Powe DG, et Growth fraction as a predictor of response to chemotherapy in node-negative breast cancer. Int J Cancer. 2010;:NA–NA.

[16] Aleskandarany MA, Green AR, Benhasouna AA, Barros FF, Neal K, Reis-Filho JS, et al. Prognostic value of proliferation assay in the luminal, HER2-positive, and triple-negative biologic classes of breast cancer. Breast Cancer Res. 2012;14(1):R3.

[17] Chang J, Ormerod M, Powles TJ, Allred DC, Ashley SE, Dowsett M. Apoptosis and proliferation as predictors of chemotherapy response in patients with breast carcinoma. Cancer. 2000;89(11):2145–2152.

[18]  Viale  G,  Regan  MM,  Mastropasqua  MG,  Maffini  F,  Maiorano  E,  Colleoni  M,  et Predictive value  of  tumor  Ki-67  expression  in  two  randomized  trials  of  adjuvant chemoendocrine therapy for node-negative breast cancer. J Natl Cancer Inst. 2008 Feb. 5;100(3):207–212.

[19] Denkert C, Loibl S, Muller BM, Eidtmann H, Schmitt WD, Eiermann W, et al. Ki67 levels  as  predictive  and  prognostic  parameters  in  pretherapeutic  breast  cancer  core biopsies:  A  translational  investigation  in  the  neoadjuvant  GeparTrio  trial.  Ann  Oncol. 2013;24(11):2786–2793.

[20] Ellis MJ, Tao Y, Luo J, A’Hern R, Evans DB, Bhatnagar AS, et al. Outcome prediction for estrogen receptor-positive breast cancer based on postneoadjuvant endocrine therapy tumor characteristics. J Natl Cancer Inst. 2008;100(19):1380–1388.

[21] Petit T, Wilt M, Velten M, Millon R, Rodier JF, Borel C, et al. Comparative value of tumour grade, hormonal receptors, Ki-67, HER-2 and topoisomerase II alpha status as predictive markers in breast cancer patients treated with neoadjuvant anthracycline-based chemotherapy. Eur J Cancer. 2004;40(2):205–211.

[22] Nishimura R, Osako T, Okumura Y, Hayashi M, Arima N. Clinical significance of Ki-67 in neoadjuvant chemotherapy for primary breast cancer as a predictor for chemosensitivity and for prognosis. Breast Cancer. 2010;17(4):269–275.

[23] Dowsett M, Smith IE, Ebbs SR, Dixon JM, Skene A, A’Hern R, et al. Prognostic value of Ki67 expression after short-term presurgical endocrine therapy for primary breast cancer. J Natl Cancer Inst. 2007;99(2):167–170.

[24] Dowsett M, Smith IE, Ebbs SR, Dixon JM, Skene A, Griffith C, et al. Short-term changes in  Ki-67  during  neoadjuvant  treatment  of  primary  breast  cancer  with  anastrozole  or tamoxifen alone or combined correlate with recurrence-free survival. Clin Cancer Res. 2005;11(2 Pt 2):951s–8s.

[25] Jonat W, Arnold N. Is the Ki-67 labelling index ready for clinical use? Ann Oncol. 2011;22(3):500–502.

[26] Dowsett M, Nielsen TO, A’Hern R, Bartlett J, Coombes RC, Cuzick J, et al. Assessment of Ki67 in breast cancer: Recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst. 2011;103(22):1656–1664.

[27] Colozza M, Sidoni A, Piccart-Gebhart M. Value of Ki67 in breast cancer: The debate is still open. Lancet Oncol. 2010;11(5):414–415.

[28] Fasanella S, Leonardi E, Cantaloni C, Eccher C, Bazzanella I, Aldovini D, et al. Proliferative activity in human breast cancer: Ki-67 automated evaluation and the influence of different Ki-67 equivalent antibodies. Diagn Pathol. 2011;6 Suppl 1:S7.

[29] Wolff AC, Hammond MEH, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab. Med. 2007;131(1):18–43.

[30] Hicks DG, Schiffhauer L. Standardized assessment of the HER2 status in breast cancer by immunohistochemistry. Lab Med. 2011;42(8):459–467.

Categories
Feature Articles

Managing complicated malaria in pregnancy: beating the odds

Malaria, especially falciparum malaria, has the potential to cause multi-organ failure and is a major cause of morbidity and mortality in pregnant women. It is defined by the World Health Organisation (WHO)  as  the  presence  of  asexual  parasitaemia  and  one  or more of the following manifestations: cerebral oedema; severe anaemia; renal failure; pulmonary oedema; adult respiratory distress syndrome (ARDS); disseminated intravascular coagulation (DIC); acidosis; hypotension or shock. [1] The pathophysiology underlying this disease will be discussed in this paper and will serve as a basis for outlining the importance of immediate supportive management and prompt administration of appropriate anti- malarial chemotherapy.

 

Introduction

Malaria is an infectious, tropical disease caused by parasitic protozoa of the species Plasmodium. The malaria parasites are transmitted via the bite of an infected female Anopheles mosquito (vector), the most virulent species being Plasmodium falciparum (P. falciparum). [2,3] Malaria in pregnancy is a major public health concern and contributes heavily to maternal and neonatal deaths worldwide. [3] In this article, the pathophysiology of P. falciparum malaria will be discussed to provide a background for the relevant management options and ethical decisions faced when treating pregnant women with complicated P. falciparum malaria.

v6_i1_a27aCase Presentation

History

A 22-year-old woman, Ms AP, was admitted to Colombo General Hospital with high-grade fever, tremors and confusion. A detailed history revealed that she was a married, small business owner from a rural, farming region located in a malaria endemic area in Sri Lanka. [2] Her medical history was clear of any clinically significant past or current illnesses. However, it was found that she was four weeks pregnant with her first child.

Findings

On examination, she was alert but appeared fatigued with visible jaundice. Her blood pressure was 110/60mmHg and she was tachypnoeic and tachycardic with a heart rate of 110bpm. Her temperature was 37.8oC, indicating a pyrexial illness and her oxygen saturation was 94% on room air. Further physical examination revealed scleral icterus and splenomegaly but was otherwise unremarkable with no elevated jugular venous pressure or signs of pulmonary oedema. Laboratory investigations revealed normocytic normochromic anaemia (haemoglobin (Hb) 90 g/L), thrombocytopenia (platelet count 100 x 109   cells/L) and hypoglycaemia (blood glucose 3 mmol/L). Ms AP’s liver function tests were also abnormal, with raised liver enzymes and increased total bilirubin (12 mmol/L). Importantly, her blood results showed stage 3 kidney failure, with increased serum urea (12mmol/L), creatinine (180mmol/L) and reduced glomerular filtration rate (36 ml/ min). While viral serology and bacterial culture were negative, thick and thin blood films for malaria revealed ringed trophozoites, typical of P. falciparum (Figure 1), and parasitemia with more than 6% infected erythrocytes. Based on the World Health Organisation (WHO) criteria for severe malaria and her above presentation, indicating major organ dysfunction and asexual parasitemia, Ms AP was diagnosed with complicated malaria.

v6_i1_a27c

 

Discussion

Effect of malaria in pregnancy

Infection of red blood cells by the asexual forms of P. falciparum and the involvement of inflammatory cytokines result in the prototypical clinical manifestations of malaria. [4] The initial paroxysm of P. falciparum malaria presents as non-specific ‘flu-like’ symptoms including malaise, headache, diarrhoea, myalgia and periodic fever every 48 hours. [4,5] These  symptoms  are  associated  with  an  immune  response  which is triggered when infected red blood cells (RBCs) rupture, releasing RBC remnants, parasitic antigens, and toxins into the bloodstream. [4,5] If untreated, this fairly un-alarming presentation can quickly progress to complicated malaria involving vital organ dysfunction. [4,5] In   pregnancy, complicated malaria is more common due to altered immune function.[5,6].Discussed below is the pathophysiology and supportive management of the major manifestations of complicated malaria in pregnant women.

Severe anaemia (Hb less than 80g/L) is a major manifestation of pregnant women with P. falciparum complicated malaria and has the potential to cause maternal circulatory collapse. This is due to additional demands of the growing foetus and the ability of P. falciparum to invade RBCs of all maturities. [6,7] Both chronic suppression of erythropoiesis by tumour necrosis factor alpha (TNF-α) and synchronous eruption of erythrocytic schizonts contribute to severe anaemia. [6,7] P. falciparum also derives energy via breakdown of haemoglobin, making infected RBCs more rigid and less able to navigate the micro-circulation. [6,7] This, along with alteration of non-infected RBC membranes, by addition of glycosylphosphatidylinositol (GPI), cause increased haemolysis and accelerated splenic clearance of RBCs. [6,8] Increased activity of the spleen manifests clinically as splenomegaly. [8] In pregnant women, like Ms AP, who present with severe anaemia, packed red cells are transfused when a safe blood supply is acquired. [9] However, blood transfusions should be used sparingly in resource poor areas where the risk of negative outcomes, such as incidental transfer of human immunodeficiency virus (HIV), is great. [9,10]

Cerebral malaria is an ominous sign in pregnant women and is a neurological syndrome characterised by altered consciousness (Glasgow Coma Scale ≥ 8) and uncontrolled, sub-clinical seizures. The precise mechanisms involved in the onset of this phenomenon remains unclear; however, localised perfusion defects, metabolic disturbances, and host immune responses all play a critical role. [11,12] Decreased localised perfusion is primarily due to microvascular changes. P. falciparum proteins, such as Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP-1), form knobs on the surfaces of infected RBCs and bind to receptors such as intracellular adhesion molecule 1 (ICAM-1) on the endothelium. This ability to cyto-adhere to cells results in sequestration of infected RBCs in blood vessels, causing endothelial inflammation and obstruction. [7,11] Interestingly, in P. falciparum malaria, a phenomenon known as rosetting also occurs. [11,12] Here, PfEMP-1 on infected RBCs bind to glycosaminoglycan receptors on uninfected RBCs, causing aggregation. [11,12] This further slows microcirculatory flow, reducing perfusion and causing ischemia-induced functional deterioration in organs such as the brain. [9,10] Mechanical ventilation in conjunction with appropriate anti- malaria drugs may be life-saving; preventing fatal hypoxemia and organ failure. [13,14] Seizures and other complications of cerebral malaria are treated with anti-convulsants to protect against rapid neurologic deterioration. [13,14]

Hypoglycaemia is a common manifestation in pregnant women with complicated malaria and arises from increased anaerobic glycolysis when P.falciparum metabolises glucose to lactic acid for energy. [7,8] In addition, decreased hepatic gluconeogenesis and increased demands of a febrile illness contribute to lowered blood glucose levels. [7,8] Intravenous administration of 25-50% dextrose solution injection is standard treatment and benefits both mother and foetus. [9,10]

Hepatic and renal failure occurs in complicated malaria due to mechanical obstruction of blood vessels by infected erythrocytes and via immune-mediated destruction of cells. [15,16] Loss of function of these organs result in poor lactate clearance, which along with increased anaerobic glycolysis and parasitic lactate production, potentiate metabolic acidosis. [15,16] Ultimately, these changes can progress to respiratory and circulatory distress. [15,16] In conjunction with anti- malarial agents, the best supportive therapy is fluid resuscitation or if required, renal replacement therapy. [15-19] Caution should be taken when treating malaria-induced hypertension in pregnancy as excessive fluid resuscitation via intravenous (IV) saline could worsen pulmonary oedema, triggering respiratory failure. [18, 19]

ARDS is more common in pregnant women and can be precipitated by  pulmonary  oedema,  compensatory  metabolic  acidosis,  sepsis, and severe anaemia. [11] It stems primarily from increased vascular permeability due to ongoing inflammation, as well as reduced pulmonary micro-circulatory flow. [11,12] Mechanical ventilation is essential in patients with ARDS as it helps maintain positive expiratory pressure and oxygenation. [13, 14] In patients presenting with hypotension, secondary sepsis due to bacterial co-infection should be suspected. Appropriate bloods including blood cultures should be taken and immediate treatment with broad-spectrum antibiotics such as clindamycin commenced. [14,19]

Effect of malaria on the foetus

Foetal distress is a concern in complicated malaria. Sequestration of RBCs in the placenta, via the binding of PfEMP-1 to chondroitin sulphate A (CSA) on the syncytiotrophoblast, can cause placental insufficiency. This results in poor oxygen supply to the foetus and may cause miscarriage, premature labour, still birth, growth restriction, and low birth weight. [20,21] This phenomenon is more likely in primigravida patients, such as Ms AP, and is thought to be due to lack of a specific immune response to the unique placental variant surface antigens (VSA) expressed by placental parasites. This hypothesis is supported by a longitudinal study by Maubert et al. which showed that antibodies against CSA-binding parasites were present in 76.9% of multigravida women by 6 months compared to only 31.8% of primigravida women. [22]  In  addition,  severe  fever  and  hypoglycaemia  disrupts  normal fetal development, which may induce premature labour and cause intrauterine growth restriction. [20,21] Micro-trauma to the placenta also increases the risk of infected maternal erythrocytes crossing into foetal circulation. Inevitably, this has the potential to cause congenital malaria and adds to the burden of complicated malaria in pregnant women. [20,21] Evidently, promoting prompt and efficacious drug treatment of malaria is necessary to reduce the systemic impact of malarial hyperparasitemia and to reduce foetal distress and mortality. Furthermore, due to the risk of congenital malaria, placenta, cord blood and neonatal thick and thin blood films should be considered for detection of malaria at an early age. [23]

Anti-malarial drugs and pregnancy

According to the South East Asian Artesunate Malaria Trial (SEAQUAMAT) study, a multi-centred, randomised controlled trial in South East Asia, artemisinin derivatives such as parenteral artesunate are the drugs of choice in pregnant women with complicated malaria. [24] These drugs are superior to quinine which is associated with a narrow therapeutic window, hypotension, and hyperinsulinemic hypoglycaemia. [24] While quinine was the traditional drug of choice, it is now considered outdated and the drug artemenisin is currently used. [24,25] Artemisinin derivatives work by producing cytotoxic oxygen radicals within the parasite.[24] Unlike other anti-malarial drugs, such quinine and chloroquine, artesunate is toxic not only to mature schizont forms of P. falciparum but also to early ring stage endoerythrocytic  trophozoites.  [24,25]  Therefore,  they  work  faster to clear parasites from the blood, reducing complications linked with micro-vascular damage and parasite glucose consumption. [24-27] While relatively safe, these drugs have been associated with foetal anaemia and lowered bone density in early trials. [23-28] However, it is important to remember that in complicated malaria the mother is the priority as without her survival, foetal mortality is highly likely. Importantly, efficacy of above drugs in pregnancy should also be monitored as pregnancy appears to alter the efficacy of anti-malarial agents. [23]. Patients should be advised of the risk of recurrence and offered regular blood films throughout their pregnancy. [23]

v6_i1_a27b

Conclusion

Complicated malaria in pregnancy is a medical emergency and can result in death if not treated properly. Like in Ms AP’s case, prompt administration of parenteral artesunate in conjunction with general supportive therapy is required for the best chance of survival for both the mother and foetus. [29]

Acknowledgements

None.

Consent Declaration

Informed  consent  was  obtained  from  the  patient  in  regard  to publication of this article for educational purposes.

Conflict of interest

None declared.

Correspondence

P Adkari: prasadi.adikari@my.jcu.edu.au

References

[1] WHO. Severe falciparum malaria. World Health Organization, Communicable Diseases

Cluster. Trans R Soc Trop Med Hyg 2000;94(Suppl. 1):S1–90.

[2]  Rajakuruna  R,  Amerasinghe  P,  Galappaththy  G,  Konradsen  F,  Briets  O,  Alifrangis Current status of malaria and anti-malarial drug resistance in Sri Lanka. Cey. J. Sci 2008;37(1):15-22.

[3] Kumar A, Chery L, Biswas C, Dubhashi N, Dutta P, Kumar V. Malaria in south asia: prevalence and control. Acta Tropica 2012;121:246-255.

[4] Lyke K, Burges R, Cissoko Y, Sangare L, Dao M, Diarre I et al. Serum levels of the pro-inflammatory cytokines interleukin-1 beta (IL-1), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian children with severe Plasmodium falciparum aalaria and matched uncomplicated malaria or healthy controls. American society of Microbiology 2004;72:5630-7.

[5] Clark I, Budd A, Alleva L, Cowden W. Human malarial disease: a consequence of inflammatory cytokine release. Malaria Journal 2006;5:2875-85.

[6] Buffet. P, Safeukui I, Deplaine G, Brousse V, Prendki V, Thellier M et al. The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology. Journal of American Society of Haematology 2011;117:381-92.

[7] Cowman A, Crabb B. Invasion of red blood cells by malaria parasites. Cell 2006;124:755-66.

[8]  Dondorp  A,  Pongponratan  E,  White  N.  Reduced  microcirculatory flow  in  severe falciparum  malaria:  pathophysiology  and  electron microscopy pathology.  Acta Tropica 2005;89:309-17.

[9] Day N, Dondorp A. The management of patients with severe malaria. Am J Trop Med. 2007;77(6):29-35.

[10] Mishra SK, Mohanty S, Mohanty A, Das B. Management of severe and complicated malaria. ICMR 2006;52(4):281-7.

[11] Barfod L, Dalgaard M, Pleman S, Ofori M, Pleass R, Hvidd L. Evasion of immunity to Plasmodium falciparum malaria by IgM masking of protective IgG epitopes in infected erythrocyte surface-exposed PfEMP1. PNAS 2011;10:1073-1078.

[12] Chakravorty S, Hughes K, Craig A. Host response to cytoadherence in Plasmodium falciparum. Biochemical Society Transactions 2008;45:221-228.

[13]  Uneke  C.  Impact  of  Plasmodium  falciparum  malaria  on  pregnancy and  perinatal outcome in Sub-Saharan Africa. Yale J Biol Med 2007; 80:95-103.

[14] Tongo O, Orimadegun A, Akinynika O. Utilisation of malaria preventative measures during pregnancy and birth outcomes. BMC 2011;11:1471-1478.

[15] Das B. Renal failure in malaria. ICMR 2008;45:83-97.

[16] Patel D, Pradeep P, Surti M, Agarwal SB. Clinical Manifestations of Complicated Malaria. JIACM 2003; 4(4):323-33.

[17] Gillion R. Medical ethics: four principles plus attention to scope. BMJ 2003;309: 184.

[18] Whitty C, Edmonds S, Mutabingwa T. Malaria in pregnancy. BJOG 2005;112:1189-95.

[19] Nosten F, Ashely E. The detection and treatment of Plasmodium falciparum. JPGM

2004;50:35-39.

[20] Pasvol G. The treatment of complicated and severe malaria. BMB 2006;75:29-47.

[21] Maitland K, Marsh K. Pathophysiology of severe malaria in children. Acta Tropica 2004;90:131-40.

[22] Maubert B, Fievet N, Deloron P. Development of antibodies against chondroitin sulfate A adherent Plasmodium falciparum in pregnant women. Infec. Immun.1999;67(10):5367-71.

[23] Royal College of Obstetricians and Gynaecologists. The diagnosis and treatment of malaria in pregnancy. Greentop Guideline No. 54B. London: RCOG; 2010.

[24]  South  East  Asian  Artesunate  Malaria  Trial  group.  Artesunate  versus  qunine  for treatment  of  severe  falciparum  malaria:  a  randomised  trial.  The  Lancet  2005;366(9487):717-25.

[25] McGready R, Lee S, Wiladphaigern J, Ashely E, Rijken M, Boel M et al. Adverse effects of falciparum and vivax malaria and the safety of antimalarial treatment in early pregnancy: a population based study. Lancet 2012;12: 388-96.

[26]  McGready  R,  White  N,  Nosten  F.  Parasitological  efficacy  of  antimalarials  in  the treatment and prevention of falciparum malaria in pregnancy 1998-2009: a systematic review. BJOG 2011;118:123-35.

[27] McIntosh H, Olliaro P. Artermisinin derivatives for treating severe malaria. Cochrane Collaboration 2012;1:33-47.

[28] Adebisi S. The toxicity of artesunate on bone developments: the wistar rat animal model of malarial treatment. Journal of Parasitic Diseases 2008;4(1).

[29] Briand V, Cottrell G, Massougbodji A, Cot M. Intermittent preventative treatment for the prevention of malaria during pregnancy in high transmission areas. Malaria Journal 2007;6:160-6.

Categories
Feature Articles

Making the cut: a look at female genital mutilation

Female Genital Mutilation (FGM) is a procedure of historical, cultural and religious derivation that continues its practice worldwide, involving partial or total removal of the external female genitalia.   The stand of many international bodies, including the United Nations, is that it epitomises a violation of the human rights of girls and women. Australian state and territorial law prohibits and categorises FGM as a criminal offence, as do RANZCOG guidelines  for  medical  practitioners.  Reducing  the  practice  of FGM worldwide encompasses involvement in awareness and education programs at an individual and societal level, beginning with local communities, elders/leaders, young men and women, and traditional health practitioners. Approaching the request for FGM or reinfibulation in an Australian healthcare setting requires an understanding of the socio-cultural influences surrounding the practice and empathy towards the needs of the patient and their cultural identity. It also requires a comprehensive understanding of the myriad physical and psychological health risks posed by FGM.

v6_i1_a26

Introduction

The  continued  worldwide  practice  of  female  genital  mutilation (FGM) or traditionally, ‘circumcision’ is one that has sparked much controversy within the ethics of Western medicine. Is the centuries old socio-cultural ritual a violation of the rights of a woman or child hiding behind the label of ‘custom’? Or has the Western world perceived ‘degradation’ where there is only an exercising of free will that is perhaps  unfathomable  but  not  necessarily  unethical?  How  much of ‘free will’ is truly an expression of an individual’s autonomy? To what extent does culture impinge upon it? And how do we as health practitioners balance this societal commentary with the bioethical principles underlying medical practice? These are questions that have come to the forefront of the FGM debate and that will be examined here. Perhaps, one of the more overarching issues we should also ponder is this: are and should the principles of what is ‘ethical’ be derived from socio-cultural forces?

According to the World Health Organisation (WHO), female genital mutilation (FGM) comprises all procedures that involve partial or total removal of the external female genitalia, or other injury to the female genital organs for  non-medical  reasons.[1] The current position of the WHO is that ‘FGM is a violation of the human rights of girls and women’.[1]

The World Health Organisation (WHO) estimates 100-140 million women worldwide are affected by female genital mutilation.[1] 28 countries of Africa, as well as a few countries of Middle East and Asia have documented practice of FGM.[1] Of these, the four countries with highest prevalence are Somalia, Sudan, Guinea and Djibouti (>90% of women). 1] In Australia, there have been an increasing number of migrants from countries practising FGM, particular over the past decade.[2]

The current laws and guidelines surrounding FGM

Under NSW Law, FGM is prohibited; Section 45 of the 1900 NSW Crimes Act extensively covers prohibition of female genital mutilation. [3] In fact, in all jurisdictions of Australia (though covered exclusively by differing states and territories), FGM is considered a criminal offence. [3] Current Royal Australian and New Zealand College of Obstetricians and Gynaecologists’ (RANZCOG) guidelines strongly recommend that all health practitioners do not acquiesce to the requests for elective reinfibulation or indeed other forms of FGM.[2] The United Nations has, as of December 2012, passed a resolution banning the practice of FGM worldwide, as a violation of human rights and dignity.[1]

The arguments ‘for’ prohibition of FGM

In terms of establishing a perspective on the matter, the tone of the commentary to follow is ultimately averse to the practice of FGM. At the forefront of this argument are the adverse health effects. A study by Hosken et al showed that 83 percent of women who had undergone FGM would require medical attention at some point in their lives for a condition resulting from the procedure.[4] In terms of a statistical look at the associated health problems, according to a survey of 55 health providers in the Nyamira District of Kenya, 49.1% reported obstructed labour, dyspareunia, bleeding, urinary problems, and fear and anxiety. [5] The World Health Organisation (WHO) estimates that women who have undergone FGM are twice as likely to die during childbirth and are more likely to give birth to a stillborn child when compared to those women who have not undergone FGM.[1]

Central to the argument is that it confers no health benefit to a woman, and contrarily presents a myriad collection of damaging consequences upon one’s health. Proponents of prohibiting the practice, such as Toubia et al, suggest that non-therapeutically excising an otherwise functioning body  part  is  not  simply  abhorrent;  it  is  a  violation of the codes of medical practice and an obstruction to the bioethical principles of non-maleficence and beneficence.[6]

An important detail is that the procedure is often performed on children (a large proportion pre-pubertal), who by virtue of medical ethics are not able to provide informed consent. But what of consenting adults? Whilst it is difficult to ignore the requests made by consenting adults in a sterile, medical environment within the healthcare systems of the Western World, this could condone the practice worldwide.[6] In many instances FGM has (despite it being a social custom of historical derivation) signified the degradation of the rights and dignity of women internationally.[1,6,7] Many argue that if health practitioners do not perform the procedure in a safe sterile manner, women will seek infibulation/reinfibulation from an untrained and often medically unsafe source.[8] However, the underlying point remains that it is the responsibility of the medical profession to uphold certain ethical principles of beneficence, non-maleficence and justice that are violated by FGM. The harm minimisation of performing re-infibulation/ infibulation sterilely as opposed to at the hands of a non-medical entity is ultimately not outweighed by the consequences of condoning said practice and failing to reduce the practice worldwide.[6,7]

Elchalal et al, in Female Genital Mutilation: the peril remains, consolidated the views of Toubia et al, in elucidating that societies and countries that promote the practice of FGM should seek to empower their women (over time) and symbolise social acceptance and respectability in practices that do not confer such negative health risks and psychological trauma.[6,7] What must be highlighted is the importance placed on healthcare workers to utilise their position of trust and objectivity, when relaying the health risks associated with FGM to patients.[6,7]

The arguments ‘against’ prohibition of FGM

It is important that whilst being in support of eradicating FGM, one examines the counter arguments. Those who defend the practice, hold the value of social integration and cultural importance to the sense of identity held by many consenting adult women, in a higher regard. [8,9] Bronnit et al identifies the psychological health benefits that can be derived from compliance with the practice of FGM, as often outweighing the adverse health risks.[8] Defenders of FGM question the betterment of the cultural and ritualistic component of mental health as being a valid justification for performing FGM.[8,9]

Whilst many commentators also refuse to condone the practice on children, Bronnit states that in denying requests for reinfibulation/ infibulation to consenting adults, you risk retreating to the ‘archaic’ models of paternalism.[8] It is an interesting argument to consider here: what of the adult woman who, in full knowledge of the risks of the procedure, requests it as it holds importance to her cultural and personal identity? It is undeniably difficult to criticise the respect for patient autonomy.

In response to this argument, the facet of autonomy that can be questioned  in  these  scenarios  is  whether  the  request  for  FGM  is a product of cultural embedding. [1,2,5,6] This does not mean to demean the cultural background of the patient. It instead allows us to contemplate the possibility that what is desired by the patient is the sociocultural integration and acceptance FGM affords them.[1,2,5] There is anecdotal evidence in current literature to suggest that fear of rejection by family and community is a potent driving force in desiring FGM.[1,5] It is difficult to assess what component of the request is entrenched in a socio-cultural need for assimilation, and this could impede the voluntariness of consent. It is important to assert that fear is no justification for condoning what is unquestionably a practice with harmful health consequences. The solution is not to acquiesce to pressure to perform FGM but to educate the community as to the risks and impacts of FGM.

Some commentators reinforce that if patient autonomy is stated to be an adequate justification for performing female cosmetic genital surgery, it should also apply as adequate justification for medically performed FGM.[8,9] Many advocates of similarly banning labioplasty argue that certain forms of cosmetic surgery on female genitalia pose similar health risks to FGM. [10] However, perhaps what this should invoke is a questioning of the ethical soundness of female genital cosmetic surgery. Despite said assertions that the legal permitting of labioplasty should likewise permit FGM, the converse can and must be argued. Performing one potentially unethical procedure should not allow the medical practice of other unethical procedures.

The final stance

It is of great interest in finally evaluating this argument, to return to a question posed at the beginning of this paper: should ethics be removed from socio-cultural standpoints?  The answer is yes, and herein lies the core opposition to the practice of FGM. Ethics are

grounded in the basic human rights and preservation of the dignity of a person. As E.H Kluge postulates in Female Genital Mutilation, Cultural Values and Ethics, ethics apply to the nature of what it is to be human, and consequently apply to all human beings irrespective of their background or belief system.[11] Therefore, if cultural frameworks fail to meet these universal standards, they can be subject to ethical critique.[11] Consequently despite having respect for the autonomy of the patient, this writer holds the opinion, as do several international bodies, that FGM has led to worldwide incidences of violations of the  rights  of  a  woman,  and  degradation  of  their  inherent  dignity and should be prohibited.[1] Also as health practitioners objectively upholding what is in the best health interests of the patient, we cannot ignore the high risks of varying adverse physical and psychological health outcomes that are often inevitable with FGM.[1,4,5]

Reducing the practice of FGM internationally

Legislation that is effective in countries condoning FGM is well and good, but how does one begin to turn a centuries old wheel? International organisations, such as UNICEF, have mapped out goals for eliminating FGM internationally.[12] These are mainly aimed at affecting change at an individual and societal level by challenging age-old customs. [12] Koso-Thomas et al found, in examining populations and countries that practice FGM, levels of education and literacy were inversely proportional to rates of FGM, so these are areas to be addressed in terms of empowering women to have the correct educational tools for informed decision making.[13] Community based interventions, which bring together leaders and elders of local communities as well as women and their families, are one method. They can permit open discourse and awareness programs to take effect.[12,13] An intriguing concept in implementing strategies for change is that of decreasing the

‘supply and demand’ of FGM.[12] This involves educating target groups such as the local health practitioners carrying out the infibulations.[12] It encompasses educating them as to the dangers of FGM or retraining practitioners of traditional medicine in women’s health and midwifery, hence providing them with a more ethically suitable position.[12,13] Educating young men and their families is also vital in terms of reducing the stigma surrounding women who do not receive FGM.[12] This will assist in challenging the association of FGM with marriageability.[12]

Managing requests for FGM in medical practice

The views of Elchalal et al and RANZCOG guidelines still hold; cultural sensitivity and probing the cross cultural barrier is necessary in providing comprehensive healthcare whilst denying the request of FGM. [2,7] Extensive antenatal/gynaecological counselling may allow a  healthcare  practitioner to  not  only  build  rapport  and  trust,  but also allow one to elicit details of what influences requests for the procedure.[2] This therefore reduces adverse mental health outcomes that may arise from a refusal of the request. The inclusion of family members  (whilst  carefully  documenting  their  views),  is  not  only in keeping with the desire of the patient; it allows you the unique opportunity to hear their opinions, understand their influence on the patient, and   incorporate them into your educational strategies.[2] The guidelines have stressed the vital importance of treating women who have undergone FGM without ‘alarm or prejudice’, as allowing them the confidence to access healthcare is an imperative outcome of treatment.[2] Educational outreach programs, namely the National Education Program on Female Genital Mutilation and FARREP (Family and Reproductive Rights Education Program) utilise both multilingual and multicultural health workers who can assist in offering culturally sensitive healthcare.[2] Ultimately, it is important to uphold the quality of life of the patient and identify the factors that contribute to it.

Acknowledgements

Dr. Vicki Langendyk for providing vital feedback about this topic for students undertaking the Obstetrics and Gynaecology ethics curriculum at the University of Western Sydney School of Medicine.

 

Conflict of interest

None declared.

Correspondence

N Vigneswaran: nilanthy.vigneswaran@gmail.com

References

[1]   World Health Organisation (WHO). Female Genital Mutilation Fact Sheet [Internet]. 2014  [Updated  2014  Feb,  Cited  2014  Jul  19].  Available  from:  http://www.who.int/mediacentre/factsheets/fs241/en/.

[2] Gilbert, E. Female Genital Mutilation: Information for Australian Health Professionals. The Royal Australian College of Obstetricians and Gynaecologist. Victoria. 1997.

[3] Australasian Legal Information Institute (AustLII): NSW Consolidated Acts. NSW Crimes Act 1900: Section 45 [Internet]. 2014. [Updated 2014 Jun 13, cited 2014 Jul 18]. Available from: http://www.austlii.edu.au/au/legis/nsw/consol_act/ca190082/.

[4] Hosken, F. The Hosken Report: Genital and Sexual Mutilation of Females, fourth edition. Lexington, MA: Women’s International Network. 1997; pp. 48.

[5] Program for Appropriate Technology in Health (PATH) and Seventh Day Adventist-Rural Health Services. “Qualitative Research Report on Health Workers’ Knowledge and Attitudes About Female Circumcision in Nyamira District, Kenya”. Nairobi. 1996; pp. 83.

[6]  Toubia  N.  Female genital  mutilation and  the responsibility  of  reproductive health professionals. International Journal of Gynecology & Obstetrics. 1994; 46:127-135.

[7 ] El Chalal, U, Ben-Ami B, Gillis R, Brzezinski A. Ritualistic Female Genital Mutilation: Current Status and Future Outlook. Obstetrical & Gynecological Survey.1997;52(10):643–651.

[8] Bronnit, S. Female genital mutilation: Reflections on law, medicine and human rights. Health Care Analysis. 1998; 6 (1):39-45.doi:10.1007/bf02678079

[9] Berer, M. Labia reduction for non-therapeutic reasons vs. female genital mutilation: contradictions in law and practice in Britain. Reproductive health matters. 2010; 18(35);106-110. doi: http://dx.doi.org/10.1016/S0968-8080 (10)35506-6.

[10] Selvaratnam, N. Concerns over female genital cosmetic surgery. SBS News Australia [Internet]. 2013 Aug 26 [cited 2014 Jul 19];Health; [1 screen]. Available here from: http://www.sbs.com.au/news/article/2012/12/27/concerns-over-female-cosmetic-genital-surgery

[11] Kluge, E. Female circumcision: when medical ethics confronts cultural values. CMAJ. 1993;148(2):288–289.

[12] UNICEF Somalia. Eradication of female genital mutilation [Internet]. 2004. [Updated 2014  Feb,  cited  2014  Jul  28].  Available  here  from:  http://www.unicef.org/somalia/resources_11628.html

[13] Koso-Thomas, O. The circumcision of women: a strategy for eradication. London, England, Zed Books, 1987. p109.